2. Attention 是通过一个查询变量 Q 找到 V 里面重要信息,K 由 V 变幻而来,QK=A ,AV = Z(注意力值) ,Z 其实是 V 的另一种表示,也可以称为词向量,具有句法和语意特征的 V 3. 也就是说,self-attention 比 attention 约束条件多了两个: (1) Q=K=V(同源) (2) Q,K,V需要遵循attention的做法 ...
一般在自然语言处理应用里会把Attention模型看作是输出Target句子中某个单词和输入Source句子每个单词的对齐模型,这是非常有道理的。目标语句生成的每个单词对应输入语句单词的概率分布可以理解为输入语句单词和这个目标生成单词的对齐概率,这在机器翻译语境下是非常直观的:传统的统计机器翻译一般在做的过程中会专门有一个...
1.Self-attention可以考虑全部的输入,而RNN似乎只能考虑之前的输入(左边)。但是当使用双向RNN的时候可以避免这一问题。 比如,对于第一个RNN,只考虑了深蓝色的输入,绿色及绿色后面的输入不会考虑,而Self-Attention对于4个输入全部考虑 2.Self-attention可以容易地考虑比较久之前的输入,而RNN的最早输入由于经过了很多层...
1.Attention Attention可以从纷繁复杂的输入信息中,找出对当前输出最重要的部分。一个典型的Attention包括三部分\(Q,K,V\)。 \(Q\)是Query,是输入的信息。\(key\)和\(value\)成对出现,通常是源语言、原始文本等已有的信息。通过计算\(Q\)和\(
attention与self-attention的区别:他们都是针对Encoder-Decoder结构的。在经典的seq2seq机器翻译任务中,...
这里的self attention称之为自注意力,即通道本身形成的权重来代表。而不是人为的分配。因此我认为,self...
3.作者:太阳花的小绿豆,self_attention和mutil self_attention的原理 1. 注意力机制 注意力机制其实是源自于人对于外部信息的处理能力。由于人每一时刻接受的信息都是无比的庞大且复杂,远远超过人脑的处理能力,因此人在处理信息的时候,会将注意力放在需要关注的信息上,对于其他无关的外部信息进行过滤,这种处理方式被...
不同的 Attention Parameter提取不同范围的全连接注意力, 并行计算,并综合这 H 组不同的局部感受野的Attention,最终组成一个总体Attention。 这样一来,当前输入的每一个单词,与 当前输入句子 和 历史输入句子 的 每一个单词都会有一个Attention权重, 这也是 Self-Attention 名字的来源,即 Attention 的计算用的是 ...
Self-attention机制是Attention机制的一种变体,它专注于捕捉数据或特征的内部相关性,减少对外部信息的依赖。在文本处理中,Self-attention机制通过计算单词间的相互影响来解决长距离依赖问题,提高模型对上下文信息的理解能力。具体而言,Self-attention机制包括将输入单词转换为嵌入向量、计算Query、Key和Value...