private void buildSegmentTree(int treeIndex, int l, int r) { if (l == r) { tree[treeIndex] = data[l]; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int min = (l + r) / 2; buildSegmentTree(leftTreeIndex, l, min); buildSe...
}//查询线段树//在以treeID为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值privateE query(inttreeIndex,intl,intr,intqueryL,intqueryR) {if(l == queryL && r ==queryR) {returntree[treeIndex]; }intmid = l + (r-l)/2;intleftTreeIndex =leftChild(treeIndex);intrightTre...
public static class SegmentTree { // arr[]为原序列的信息从0开始,但在arr里是从1开始的 // sum[]模拟线段树维护区间和 // lazy[]为累加懒惰标记 private int MAXN; private int[] arr; private int[] sum; public SegmentTree(int[] origin) { MAXN = origin.length + 1; arr = new int[MAXN...
/*** @param tree : 线段树* @param node : 根节点* @param start : 查找范围的左边界* @param end : 查找范围的右边界* @param L : 查询框定的左边界* @param R : 查询框定的右边界*/static int query_tree(int[] tree, int node, int start, int end, int L, int R) {/*System.out.p...
java 也贴一个自认为比九章答案简洁的写法, 思路是一样的, O(lgn) 时间复杂度 /** * DefinitionofSegmentTreeNode: * public class SegmentTreeNode { * public intstart,end,max; * public SegmentTreeNode left, right; * public SegmentTreeNode(intstart, intend, intmax) { * this.start=start; *...
分段树(segmenttree)是强化学习中 "优先级回放机制" 的重要组成部分。本文针对分段树(segmenttree)的一个开源版本的实 强化学习 权重 子节点 数据 原创 wx62830f4b679a4 2022-05-19 20:42:05 661阅读 Java —— ConcurrentHashMap锁分段机制 public class ConcurrentHashMap<K,V>extends AbstractMap<K,V>implem...
线段树介绍(segment tree) 1.引入 给定一个区间[1,n][1,n],希望你实现一种数据结构,支持以下操作: 1.修改ii号节点的值。 2.询问区间[i,j][i,j]中所有节点的和。 这不是树状数组板子 3.修改区间[i,j][i,j]中所有节点的值 4.询问ii号节点的值...
Algorithms, 4th edition textbook code and libraries - algs4/SegmentTree.java at master · pesong/algs4
线段树(segment tree) 线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中。下图就为一个线段树: (PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行。) 1.线段树基本性质和操作 线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为...
Building an O(n^2) segment tree is very expensive, your implementation took O(n^2) just to build the tree. Sparse table can be built in the same speed and compute rmq in O(1), as opposed to O(logn). The only advantage this 2D segment tree still has over the sparse table is O...