在数学的微积分领域中,导数(Derivative)是一个核心概念,用于描述函数在某一点处的变化率。对于函数tanx,其导数可以表示为secx,即(tanx)'=secx。这个等式表明,函数tanx的变化率在任意一点上都等于该点处的secx值。进一步分析,我们可以看到secx实际上就是1/cosx。因此,(tanx)'=1/cosx=secx。这个...
sec csc tan cot的导数导数(Derivative)是微积分中的重要概念,它描述的是函数在某一点处的变化率。在微积分中,常见的三角函数(sine、cosine、tangent、cotangent、secant、cosecant)的导数也是非常重要的。在本文中,我们将重点讨论secant、cosecant、tangent、cotangent函数的导数,并给出相应的导数公式和推导过程。 一...
NCERT solutions for CBSE and other state boards is a key requirement for students. Doubtnut helps with homework, doubts and solutions to all the questions. It has helped students get under AIR 100 in NEET & IIT JEE. Get PDF and video solutions of IIT-JEE Mains & Advanced previous year pap...
In calculus, the derivative of sec(x) is sec(x)tan(x). This means that at any value of x, the rate of change or slope of sec(x) is sec(x)tan(x). For more on this see Derivatives of trigonometric functions together with the derivatives of other trig functions. See also the ...
Submit Dsecx(secx+tanx)2 Submit View Solution Free Ncert Solutions English Medium NCERT Solutions NCERT Solutions for Class 12 English Medium NCERT Solutions for Class 11 English Medium NCERT Solutions for Class 10 English Medium NCERT Solutions for Class 9 English Medium ...
Find the derivative of tan (sec x).Chain-Rule:The derivatives of composite functions can be evaluated by the help of chain rule. The chain rule is an important method to understand derivatives that how it can be generated from functions....
Evaluate ∫2sec(x)tan(x)+3x2−1xdx. Elementary Integrals: The formulas we use to derive elementary functions can be used to form elementary integrals, which we'll use to evaluate simple integrals. For instance, the derivative of sec(x) is sec(x)tan(x)...
Integral of sec(x)*tan(x) by x: 1/cos(x)+C To compute the integral of sec(x) * tan(x) with respect to x, follow these steps: 1.Identify the integral: We want to compute the integral 2.Recall the derivative: Recognize that the derivative of sec(x) is sec(x) * tan(x). Th...
导数(Derivative)也叫导函数值,又名微商,是微积分学中重要的基础概念,是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。导数起源:大约在...
The derivative of ( y) with respect to ( x) is ( y()' ).( y()' )The derivative of ( (sec)(x)) with respect to ( x) is ( (sec)(x)(tan)(x)).( (sec)(x)(tan)(x))Reform the equation by setting the left side equal to the right side.( y()' =(sec)(x)(tan)(x...