ddxtan(x)=sec2(x)dcdx=0[Wherecis constant value]∫dxx=ln|x|+C[WhereCis an arbitrary constant of indefinite integration] Answer and Explanation:1 Given ∫sec22θdθ4+tan2θ Solution This integral can be evaluated by applying the... ...
View Solution ifx=acos4θ,y=asin4θ,thendydxatθ=3π4is View Solution Free Ncert Solutions English Medium NCERT Solutions NCERT Solutions for Class 12 English Medium NCERT Solutions for Class 11 English Medium NCERT Solutions for Class 10 English Medium ...
Integral of sec^2 theta tan^3 theta d(theta). Evaluate the integral. integral tan^2 theta sec^4 theta d theta (a) Evaluate the integral integral_0^{pi / 4} tan^4 (theta) sec^2 (theta) d theta. (b) Evaluate the integral. (Use C for the constant of integra...
∫0π4tan7(θ)sec2(θ)dθ Question: ∫0π4tan7(θ)sec2(θ)dθ Integration by substitution Consider a functionf(x)andg(x) Wheref′(x)=g(x) If the integral is of the form∫f(x)g(x)dx Then integral can be solved by assumingf(x)=t⇒f′(x)dx=dt ...
(Use C for the constant of integration.) integral {x^6 + 2 x} / {x^7 + 7 x^2 + 2} dx Evaluate the integral. (Use C for the constant of integration.) Integral of e^(-theta) cos(7theta) d(theta). Evaluate the integral. (Use C for the constant ...
Step 8: Combine resultsAfter integration, we will have: I=−tan(θ)+2log(1+tan(θ))+C Step 9: Compare with given equationWe compare this result with the given form: I=λtan(θ)+2log(f(x))+C From this comparison, we can identify: λ=−1andf(x)=1+tan(θ) Final AnswerThu...
There are 2 steps to solve this one. Solution Share Step 1 The given integration is as follows ∫0π2(15cost)dt1+sin2t Put, View the full answer Step 2 Unlock Answer UnlockPrevious question Next questionNot the question you’re looking for? Po...
Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more.
SU = self.SimulatedUniverse# reinitialize working angles and delta magnitudes used for integrationself.WAint = np.zeros(TL.nStars)*u.arcsecself.dMagint = np.zeros(TL.nStars)# calculate estimates of shortest WAint and largest dMagint for each targetforsIndinrange(TL.nStars): ...
(a) Find the definite integral using the substitution x = \tan \theta. \int \frac{x^2}{(1 + x^2)^2} dx (b) Find the definite integral using the substitution x = 5 \sec \theta. \int \frac{x^3}{ Find the indefinite integral. Use C for the constant of integration.\\int...