让我们通过一个简单的案例来演示如何使用sklearn的PCA进行数据降维。假设我们有一组鸢尾花数据集(Iris dataset),这是一个经典的多变量数据集,非常适合用来演示PCA的应用,我们希望将其降维到两个主成分。 from sklearn.datasets import load_iris from sklearn.decomposition import PCA import matplotlib.pyplot as plt...
这一小节就来看看sklearn中对于PCA是如何进行封装的,然后通过构造的虚拟数据集以及真实的digits手写数字识别数据集来展示PCA降维的效果。 一 sklearn中的PCA sklearn封装的PCA与前几个小节我们自己封装的PCA,虽然他们大体流程基本一致,但是他们之间还是有很多不同的地方。 在前一个小节的时候,我们使用梯度上升法求解PCA...
PCA通过降维,用低维的数据去代表高维的数据,用少数几个变量代替原有的大量变量,同时合并重复信息,降低现有变量的维度,而不丢失重要信息。 二sklearn库中的PCA 在sklearn库中,PCA算法的实现非常直观。我们可以通过sklearn.decomposition.PCA类来使用PCA。该类的...
因此,主成分分析或PCA通过选择捕获关于数据集的最大信息的最重要属性来将数据从高维空间转换到低维空间。 Python实现 要在Scikit learn中实现PCA,在应用PCA之前必须标准化/规范化数据。 PCA是从sklearn. decomposition导入的。我们需要选择所需数量的主成分。 通常,n_components被选择为2以获得更好的可视化效果,但这...
在sklearn库中,PCA算法的实现非常直观。我们可以通过sklearn.decomposition.PCA类来使用PCA。该类的主要参数包括: n_components:指定要保留的主成分个数,可以是整数、浮点数、字符串或None。例如,n_components=2表示保留前两个主成分。 whiten:布尔值,表示是否进行白化处理,即是否使降维后的数据特征具有相同的方差。
fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。 fit(X),表示用数据X来训练PCA模型。 函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维。 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中。最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用...
scikit-learn 中的 PCA 默认使用奇异值分解将数据降维到低维空间。同时 scikit-learn 也提供了丰富且简洁友好的API接口供使用者调用。以下用代码具体展示: 在上面的代码中,我们创建了一个符合线性趋势带有噪音的数据集,然后使用 PCA 将这个数据集降维,为了便于在坐标系中可视化,使用 scikit-learn 中 PCA 模型的 in...
《scikit-learn》PCA(一),特征选择是从已经存在的特征中选择相关性,信息量最多的特征。特征创造,比如降维
1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中。最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法。 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到了,它主要用于非线性数据的降维,需要用到核技巧。因此在使...