一、scikit-learn中的Kmeans介绍 scikit-learn 是一个基于Python的Machine Learning模块,里面给出了很多Machine Learning相关的算法实现,其中就包括K-Means算法。 官网scikit-learn案例地址:http://scikit-learn.org/stable/modules/clustering.html#k-means部分来自:scikit-learn 源码解读之Kmeans——简单算法复杂的说 ...
在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans。另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatchKMeans。一般来说,使用K-Means的算法调参是比较简单的。 用KMeans类的话,一般要注意的仅仅就是k值的选择,即参数n_clusters;如果是用MiniBatchKMeans的话,也...
当数据集规模较大时,KMeans算法的计算效率和内存占用会显著增加。此时,可以考虑使用MiniBatchKMeans算法,它通过每次只处理数据集的一个子集来加速计算。 2. 初始质心选择的影响 初始质心的选择对KMeans算法的最终结果有一定影响。为了降低这种影响,可以使用’k-means++’初始化方法,它选择彼此尽可能远的初始质心。 3...
4.init 初始质点选取方式{'k-means++','random'/an ndarray|,defaults to'k-means++'5.algorithm"auto","full"or"elkan",default="auto"6.precompute_distances:{'auto':True,False},预先计算距离,默认值是auto7.tol:聚类结果收敛的误差,当质心欧氏距离变化小于该值时,停止运算,为了控制MiniBatchKMeans尽早停...
在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans。另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatchKMeans。一般来说,使用K-Means的算法调参是比较简单的。 用KMeans类的话,一般要注意的仅仅就是k值的选择,即参数n_clusters;如果是用MiniBatchKMeans的话,也...
在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类。重点讲述如何选择合适的k值。 1. K-Means类概述 在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans。另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatch...
现在我们来用K-Means聚类方法来做聚类,首先选择k=2,代码如下: fromsklearn.clusterimportKMeans y_pred= KMeans(n_clusters=2, random_state=9).fit_predict(X) plt.scatter(X[:, 0], X[:,1], c=y_pred) plt.show() k=2聚类的效果图输出如下: ...
1 使用sklearn实现K-Means 1.1 重要参数:n_clusters n_clusters 是 KMeans 中的 k,表示着我们告诉模型我们要分几类。这是 KMeans 当中唯一一个必填的参数,默认为 8 类,但通常我们的聚类结果会是一个小于 8 的结果。通常,在开始聚类之前,我们并不知道n_clusters 究竟是多少,因此我们要对它进行探索。
Python的scikit-learn库中的K-Means文本聚类算法在每次运行时可能会提供不同的结果,这是由于算法的随机性导致的。K-Means算法是一种迭代聚类算法,其结果取决于初始聚类中心的选择和迭代过程中的随机性。 K-Means算法的基本思想是将数据集划分为K个簇,每个簇都以其质心(簇中所有样本的平均...
Sklearn聚类算法的K-means算法 K-means聚类算法 聚类算法的过程: 随机选择k个中心 遍历所有样本,把样本划分到距离最近的一个中心 划分之后就有K个簇,计算每个簇的平均值作为新的质心 重复步骤2,直到达到停止条件 停止:聚类中心不再发生变化;所有的距离最小;迭代次数达到设定值 ...