scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景。 线性回归的目的是要得到输出向量\(\mathbf{Y}\)和输入特征\(\mathbf{X}\)之间的线性关系,求出线性回归系数\(\mathbf\theta\),也就是 \(\...
线性回归是一种基本的预测分析方法,它通过找到一个最佳拟合直线来预测一个连续值。scikit-learn是一个强大的Python库,可用于进行各种机器学习任务,包括线性回归。 下面是一个使用scikit-learn进行线性回归分析的示例代码: import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train...
scikit-learn学习线性回归 利用UCI大学公开的机器学习数据来跑线性回归,数据集是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们的目标是得到一个线性关系,其中AT/V/AP/RH这4个是样本特征,PE是样本输出, 也就是说机器学习的...
lin_reg.fit(X, y)print('sk-learn线性回归解析解:','b:', lin_reg.intercept_,'w:', lin_reg.coef_)# 线性回归批量梯度下降法(batch gradient descent)deflinear_regression_batch_gd(X_b, y):# 学习率不变、迭代次数和样本数learning_rate =0.1max_iterations =1000m =100# 随机初始值theta = np...
在Scikit-learn中,可以使用LinearRegression类来实现线性回归。下面是一个简单的示例代码: from sklearn.linear_model import LinearRegression import numpy as np # 创建一些示例数据 X = np.array([[1], [2], [3], [4]]) y = np.array([2, 4, 6, 8]) # 创建线性回归模型 model = Linear...
fromsklearn.linear_modelimportLinearRegression # 构建线性回归模型 pipe_lm=Pipeline([ ('lm_regr',LinearRegression(fit_intercept=True)) ]) # 训练线性回归模型 pipe_lm.fit(x_train,y_train) # 使用线性回归模型进行预测 y_train_predict=pipe_lm.predict(x_train) ...
对scikit-learn中线性回归算法进行总结,分析各自的不同和使用场景。 前言 线性回归的目的是要得到输出向量Y和输入特征X之间的线性关系,求出线性回归系数θ,也就是 Y=Xθ。其中Y的维度为mx1,X的维度为mxn,而θ的维度为nx1。m代表样本个数,n代表样本特征的维度。
基于scikit-learn,使用线性回归法预测公司利润。 【微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩】1、简介生成式人工智能无疑是一个改变游戏规则的技术,但对于大多数商业问题来说,回归和分类等…
我们可以通过向量化计算在Python中很容易的实现这4中指标的计算。同时,你也可以直接在 scikit-learn 中的 metrics 中直接调用 mean_squared_error,mean_absolute_error,r2_score 方法直接计算得到 MSE、MAE、R Squared。 2、线性回归 1)小引—— kNN 回归...
岭回归放弃最小二乘法的无偏性,使得回归系数 w 更为符合实际、更可靠的回归方法。 import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[0.5, 1].T y_train = [0.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict( Li...