# 设置Seaborn的风格和颜色调色板sns.set_style("darkgrid")# 设置图片大小plt.figure(figsize=(8,6))# 设置宽10英寸,高6英寸# 绘制散点图,展示花瓣长度和花瓣宽度之间的关系sns.scatterplot(data=iris,x='petal_length',y='petal_width',hue='species',style='species')# 设置图表标题和标签plt.title('...
密度散点图(Density Scatter Plot),也称为密度点图或核密度估计散点图,是一种数据可视化技术,主要用于展示大量数据点在二维平面上的分布情况。与传统散点图相比,它使用颜色或阴影来表示数据点的密度,从而更直观地展示数据的分布情况。密度散点图能更好地揭示数据的集中趋势和分布模式,尤其是在数据量非常大时,避免...
【深度学习】 Python 和 NumPy 系列教程(十八):Matplotlib详解:2、3d绘图类型(4)3D曲面图(3D Surface Plot) 深度学习numpysurface教程python Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。本系列将介绍Python编程语言和使用Python进行科学计算的方法,...
scatterplot(),散点图。 数据探索: 画图: ## Scatterplot with multiple semantics import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") ## Load the dataset diamonds = sns.load_dataset("diamonds") ## Draw a scatter plot while assigning point colors and sizes ...
Seaborn 是一个基于 Python 的数据可视化库,它提供了多种统计数据分布和可视化的功能。Seaborn 使用 Matplotlib 作为其绘图后端,因此可以轻松地生成各种精美图表。 3.Scatterplot 的作用 Scatterplot 可以用于展示两个变量之间的关系,例如相关性、分布等。在数据分析中,散点图是一种重要的可视化工具,可以帮助我们发现数据...
在Python中,Matplotlib是一个广泛使用的数据可视化库,它提供了多种工具来创建各种类型的图表,包括散点矩阵图。散点矩阵图是一种非常有用的可视化工具,它可以帮助我们理解和分析多维数据。在Matplotlib中,我们可以使用scatter_matrix函数来创建散点矩阵图。scatter_matrix函数接受一个NumPy数组作为输入,并返回一个4x4的子图...
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs) 属性参数意义 坐标 x,y 输入点列的数组,长度都是size 点大小 s 点的直径数组,默认直径20...
ExampleGet your own Python Server Use thescatter()method to draw a scatter plot diagram: importmatplotlib.pyplotasplt x =[5,7,8,7,2,17,2,9,4,11,12,9,6] y =[99,86,87,88,111,86,103,87,94,78,77,85,86] plt.scatter(x, y) ...
python能画的图种类非常多,而且看上去都很好看,具体种类部分可参看:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure 这里主要是探索下散点图绘制。 1. 首先是导入包,创建数据 importmatplotlib.pyplot as pltimportnumpy as np ...
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs) Make a scatter plot of x vs y. ...