defguide(subsample_size):mu = pyro.param("mu",lambda: Variable(torch.zeros(len(data)), requires_grad=True)) sigma = pyro.param("sigma",lambda: Variable(torch.ones(1), requires_grad=True))withpyro.iarange("data", len(data), subsample_size)asind: mu = mu[ind] sigma = sigma.expand(...
If you have not, boot the Docker daemon. This can be done simply by either opening Docker Desktop or run Docker . More information can be found on thedocker docs. Docker is used to build the python lambda functions in CDK. To deploy the example architecture, run the following commands. T...
Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Ca...
lambda-event-filtering add sample for lambda event filtering with dynamodb and sqs (#149) Sep 19, 2022 lambda-function-urls-javascript split function url samples (#230) Nov 24, 2023 lambda-function-urls-python split function url samples (#230) ...
Tutorial: Using a Lambda function to access an Amazon RDS database Learn how to create a Lambda function from the RDS console to access a database through a proxy, create a table, add a few records, and retrieve the records from the table. You also learn how to invoke the Lambda functi...
在下文中一共展示了sample函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。 示例1: generate_text ▲点赞 9▼ defgenerate_text(session, model, config, starting_text='<eos>', ...
本文搜集整理了关于python中cdat_info get_sampledata_path方法/函数的使用示例。 Namespace/Package: cdat_info Method/Function: get_sampledata_path 导入包: cdat_info 每个示例代码都附有代码来源和完整的源代码,希望对您的程序开发有帮助。 示例1 def setUp(self): """ Set up the grids to pass to ...
to_df() #Pythonでロジスティック回帰を実行 cat_columns = df.select_dtypes(['category']).columns df[cat_columns] = df[cat_columns].apply(lambda x: x.cat.codes) df['intercept'] = 1.0 logit = sm.Logit(df['Career_Change'], df[['Age','Salary','Gender','intercept']]) result =...
#导入defaultdict模块 from collections import * strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'puppy', 'kitten', 'puppy') counts = defaultdict(lambda: 0) # 使用lambda来定义简单的函数 for s in strings: counts[s] += 1 print(counts)#defaultdict(<function <lambda> at 0x00...
包中的sample.split函数还是caret包中的createDataPartition函数,都针对分类标签做了混合后的分层随机抽样,这样可以保证训练集与测试集内的各类标签分布比例与样本总体的分布比例严格一致...Python的sk-learn库中也有现成的数据集分割工具可用。...stratify参数则可以保证训练集&测试集中样本标签结构比例与指定的总体中...