下载Tongyi-DataEngine/SA1B-Dense-Caption数据集,执行网页上命令from modelscope.msdatasets import MsDataset ds = MsDataset.load('Tongyi-DataEngine/SA1B-Dense-Caption', subset_name='default', split='train'),modelscope版本:1.14.0,提示错误:TypeError: Value.__init__() missing 1 required positional...
● SA-1B(segment anything)国内免费快速下载地址: https://opendatalab.com/SA-1B ● 评测数据集资源(部分): ADE20K:https://opendatalab.com/ADE20K_2016 NDD20 (Northumberland Dolphin Dataset 2020):https://opendatalab.com/NDD20 LVIS:https://opendatalab.com/LVIS STREETS:https://opendatalab....
浦数丨人工智能开放数据平台,作为上海人工智能实验室九大开源项目之一,以统一标准构建开放数据集互通互联网络,是下一代人工智能交叉创新和技术发展的数据底座。平台已集结3,500+优质公开数据集、覆盖1,300+任... « 上一篇 浦数AI Talk 第三季丨多模态、大模型的技术演进之——BigCode大型代码语言开源项目分享 ...
(II) Moreover, our SSA can serve as an automated dense open-vocabulary annotation engine called Semantic segment anything labeling engine (SSA-engine), providing rich semantic category annotations for SA-1B or any other dataset. This engine significantly reduces the need for manual annotation and ...
SAM is a powerful model for arbitrary object segmentation, while SA-1B is the largest segmentation dataset to date. However, SAM lacks the ability to predict semantic categories for each mask. (I) To address above limitation, we propose a pipeline on top of SAM to predict semantic category ...
Therefore, by combining the fine image segmentation annotations of SA-1B with the rich semantic annotations provided by these advanced models, we can provide a more densely categorized image segmentation dataset. 👍 What SSA can do? SSA + SA-1B: SSA provides open-vocabulary and dense mask-le...