RT-DETR代表了一种新颖的端到端实时检测器,标志着DETR家族的重大进步。 在本报告中,我们介绍了RT-DETRv2,这是一种改进的实时检测Transformer。该工作基于最近的RT-DETR,并为DETR家族内的灵活性和实用性提供了一系列免费选项,同时优化了训练策略以实现性能提升。具体而言,RT-DETRv2建议在可变形注意力模块内为不同尺...
RT-DETR v2 相较于 v1 的 4个优化点, 视频播放量 3493、弹幕量 1、点赞数 93、投硬币枚数 35、收藏人数 166、转发人数 10, 视频作者 Enzo_Mi, 作者简介 Be Aggressive,相关视频:RT-DETR |1、abstract 算法概述,RT-DETR | 5、CCFM 收尾工作 | 理论+代码精讲,Diffusion
凭借这些创新,D-FINE 在 COCO 数据集上以 78 FPS 的速度取得了 59.3% 的平均精度 (AP),远超 YOLOv10、YOLO11、RT-DETR v1/v2/v3 及 LW-DETR 等竞争对手,成为实时目标检测领域新的领跑者。目前,D-FINE 的所有代码、权重以及工具已开源,包含了详细的预训练教程和自定义数据集处理指南。研究团队分别使...
而 DETR 系列则在 RT-DETR 之后,陆续推出了 LW-DETR、RT-DETRv2 和 RT-DETRv3。 这两类模型的重要突破,实质上得益于相互借鉴和融合。RT-DETR 引入了 YOLO 的 RepNCSP 模块,以替代冗余的多尺度自注意力层,通过重新设计轻量化的混合编码器,实现了实时 DETR;而 YOLOv10 借鉴了 DETR 的匹配策略,通过训练额外...
然而,随着应用场景的不断拓展,对模型尺寸和推理速度的要求也日益严苛。为了进一步提升RT-DETR的效能,我们创新性地引入了EfficientFormerV2模块,作为RT-DETR主干网络的替代方案,实现了在保持原有检测精度的同时,大幅度降低模型参数量的显著成果。 核心优势概述:
看到RT-DETR的性能指标,发现指标最好的两个模型backbone都是用的HGNetv2,毫无疑问,和当时的picodet一样,骨干都是使用百度自家的网络。 初识HGNet的时候,当时是参加了第四届百度网盘图像处理大赛,文档图像方向识别专题赛道,简单来说,就是使用分类网络对一些文档截图或者图片进行方向角度分类。 当时的方案并没有那么快...
一、RT-DETR横空出世 前几天被百度的RT-DETR刷屏,该提出的目标检测新范式对原始DETR的网络结构进行了调整和优化,以提高计算速度和减小模型大小。这包括使用更轻量级的基础网络和调整Transformer结构。并且,摒弃了nms处理的detr结构与传统的物体检测方法相比,不仅训练是端到端的,检测也能端到端,这意味着整个网络在训练...
1.初始框预测:与传统 DETR 方法类似,D-FINE 的解码器会在第一层将 Object Queries 转换为若干个初始边界框。这些边界框只用于初始化,不需要特别精确。 2.细粒度的分布优化:与传统方法不同,D-FINE 的解码层不会直接预测新的边界框,而是基于初始边界框生成四组概率分布,并通过逐层优化对其进行调整。这些概率分布...
RT-DETR 网络模型主要由两个部分组成,分别是 ResNet 或者 HGNetv2 构成的 backbone 和 RT-DETR 构成的检测头。在模型的 backbone 中有大量的卷积层,此外在检测头中也有大量的矩阵乘计算,这些操作均可进行量化,从模型结构上分析来看,RT-DETR 模型拥有足够的量化加速潜力。我们使用了量化分析工具分析了各层的...
本文将采用RT-DETR两种不同风格的onnx格式,使用onnxruntime20行代码,无需nms操作即可实现简易部署推理. 一、原生onnx+ort推理方式 使用以下命令抽取出模型配置文件和模型参数文件: pythontools/export_model.py-cconfigs/rtdetr/rtdetr_hgnetv2_l_6x_coco.yml-oweights=https://bj.bcebos.com/v1/paddledet/mo...