1. AUC (Area Under Curve) 被定义为ROC曲线下的面积,取值范围一般在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。 2.AUC 的计算方法 非参数法:(两种方法实际证明是一致的) (1)梯形法则:早期由于测试样本有限,...
AUC(Area Under the Curve,曲线下面积)通常与ROC曲线一起使用。AUC值表示ROC曲线下方的面积,其数值范围在0.5到1之间,用于衡量模型区分正负类的能力。 AUC值的计算公式 \[{\rm{AUC}} = \int_0^1 {{\rm{TPR}}} ({\rm{FPR}}){\mkern 1mu} d{\rm{FPR}}\\\] 当AUC = 0.5时,模型与随机猜测相当...
ROC 曲线(receiver operating characteristic curve,接收者操作特征曲线)与 AUC(area under curve)是评价二分类问题的常用指标。ROC 最初在军事领域提出,用于评价雷达系统的灵敏性,后来也在医学、生物、气象等领域得到广泛应用。其实,任何一个二分类模型都可以用 ROC 曲线与 AUC 指标来作为评判标准。 混淆矩阵 在二分...
顾名思义,AUC的值就是处于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的performance。 2. ROC的动机 对于0,1两类分类问题,一些分类器得到的往往不是0,1这样的标签,如神经网络得到诸如0.5,0.8这样的分类结果。这时我们人为取一个阈值,比如0.4,那么小于0.4的归为0类,大...
ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier)(https://en.wikipedia.org/wiki/Binary_classification) 的优劣。之前做医学图像计算机辅助肺结节检测时,在评定模型预测结果时,就用到了ROC和AUC,这里简单介绍一下它们的特点,以及更为...
在进行学习器的比较时,若一个学习器的ROC曲线被另一个学习器的曲线完全“包住”,则可断言后者的性能优于前者;若两个学习器的ROC曲线发生交叉,则难以一般性的断言两者孰优孰劣。此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ...
在进行学习器的比较时,若一个学习器的ROC曲线被另一个学习器的曲线完全“包住”,则可断言后者的性能优于前者;若两个学习器的ROC曲线发生交叉,则难以一般性的断言两者孰优孰劣。此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ROC Curve),如图1、图2所示。
在统计和机器学习中,常常用AUC来评估二分类模型的性能。AUC的全称是 area under the curve,即曲线下...
roc_curve和auc函数都是用来计算AUC面积的,只不过传入的参数不一样。 from sklearn.metrics import roc_curve # 返回fpr、tpr、threshhold from sklearn.metrics import roc_auc_score # 返回ROC曲线下的面积 from sklearn.metrics import auc # 返回ROC曲线下的面积 ...