2. AUC(Area Under the Curve) AUC(ROC曲线下面积)是ROC曲线下的面积,用于衡量分类器性能。AUC值越接近1,表示分类器性能越好;反之,AUC值越接近0,表示分类器性能越差。在实际应用中,我们常常通过计算AUC值来评估分类器的性能。 理论上,完美的分类器的AUC值为1,而随机分类器的AUC值为0.5。这是因为完美的分类器...
计算AUC值,其中x,y分别为数组形式,根据(xi,yi)在坐标上的点,生成的曲线,然后计算AUC值; 形式: sklearn.metrics.auc(x, y, reorder=False) 5、roc_auc_score 直接根据真实值(必须是二值)、预测值(可以是0/1,也可以是proba值)计算出auc值,中间过程的roc计算省略。 形式: sklearn.metrics.roc_auc_score(...
2. Receiver Operating Characteristic Curve ( ROC 曲线) 3. ROC 的 AUC 4. P-R 曲线和 ROC 曲线的关系及如何选择? 5. Return on Investment(ROI) 6. Kolmogorov-Smirnov(KS) 参考 前文回顾: 机器学习模型评价指标之混淆矩阵 机器学习模型评价指标之Accuracy、Precision、Recall、F-Score、P-R Curve、AUC、...
根据AUC的物理意义,我们计算正样本score大于负样本的score的概率。取N*M(N为正样本数,M为负样本数)个二元组,比较score,最后得到AUC。时间复杂度为 O ( N ∗ M ) O(N*M) O(N∗M)。 与第二种方法相似,直接计算正样本score大于负样本的score的概率。我们首先把所有样本按照score排序,依次用rank表示他们...
ROC和AUC的区别 ROC是一个曲线,AUC是曲线下面的面积值。 ROC曲线是FPR和TPR的点连成的线。 可以从上面的图看到,横轴是FPR, 纵轴是TPR (TPR = TP / (TP + FN);FPR = FP / (FP + TN)) ROC曲线如果想要理解的话,要关注四点一线: 1) (0,1)点:FPR==0,TPR==1 -->代表最好的一种情况,即所有...
AUC实际上就是ROC曲线下的面积。(英语:Area under the Curve of ROC (AUC ROC)),其意义是: 因为是在1x1的方格里求面积,AUC必在0~1之间。 假设阈值以上是阳性,以下是阴性; 若随机抽取一个阳性样本和一个阴性样本,分类器正确判断阳性样本的值高于阴性样本之概率 = AUC ...
在进行学习器的比较时,若一个学习器的ROC曲线被另一个学习器的曲线完全“包住”,则可断言后者的性能优于前者;若两个学习器的ROC曲线发生交叉,则难以一般性的断言两者孰优孰劣。此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ...
AUC,即曲线下面积(Area Under Curve),是 ROC 曲线下面积的一个数值表示。它提供了一个定量的指标,用来衡量分类模型的整体表现。AUC 值范围从 0 到 1,值越大表示模型性能越好。 1.3 为何需要 ROC/AUC 在分类任务中,特别是当数据集类别不平衡时,单纯依赖准确率(Accuracy)可能会造成误导。为了更好地理解这一点...