AUC通常与ROC曲线(Receiver Operating Characteristic curve)一起使用,用于衡量模型在不同分类阈值下的性能。 对于二分类问题,使用sklearn.metrics.roc_auc_score()函数计算AUC是非常直接的。然而,当处理多分类问题时,情况会稍微复杂一些,因为AUC是专门为二分类问题设计的。为了在多分类问题上使用AUC,我们通常会采用一对...
在二分类问题中,roc_auc_score的结果都是一样的,都是计算AUC。 在多分类中,有两种计算方式:One VS Rest和 One VS One,在multi_class参数中分别为ovr和ovo。 ovr:以3分类为例,混淆矩阵分为3层,第一层为C1类和排除了C1的其他类,第二层为C2类和排除了C2的其他类,第三层为C3类和排除了C3的其他类,如图所...
本文使用sklearn的逻辑斯谛回归模型,进行鸢尾花多分类预测,对OvR与OvO多分类方法下的预测结果进行对比。
roc_curve和auc函数都是用来计算AUC面积的,只不过传入的参数不一样。 from sklearn.metrics import roc_curve # 返回fpr、tpr、threshhold from sklearn.metrics import roc_auc_score # 返回ROC曲线下的面积 from sklearn.metrics import auc # 返回ROC曲线下的面积 from sklearn.metrics import plot_roc_curve ...
】2024最全线性回归、逻辑回归、KNN、决策树、随机森林、支持向量机、K-近邻算法、强化学习、贝叶斯算法...12大机器学习算法一口气刷完! 245 -- 3:15 App AUC很高但召回率很低怎么办?很实用的补救方法 | ROC | Recall | 阈值 | 准确率 | 混淆矩阵 | 网络安全 | Python 278 -- 4:35 App 分类算法的...
其中average参数有五种:(None, ‘micro’, ‘macro’, ‘weighted’, ‘samples’) 2、召回率 metrics.recall_score(y_true, y_pred, average='micro') Out[134]: 0.33333333333333331 metrics.recall_score(y_true, y_pred, average='macro')
sklearn.metrics.auc(x, y, reorder=False) 5roc_auc_score : 直接根据真实值(必须是二值)、预测值(可以是0/1,也可以是proba值)计算出auc值,中间过程的roc计算省略。 形式: sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', sample_weight=None) ...
上面的两个方法得到的ROC曲线是不同的,当然曲线下的面积AUC也是不一样的。 在python中,方法1和方法2分别对应sklearn.metrics.roc_auc_score函数中参数average值为’macro’和’micro’的情况。下面参考sklearn官网提供的例子,对两种方法进行实现。 # 引入必要的库 ...
roc_auc_score roc_auc_score(Receiver Operating Characteristics(受试者⼯作特性曲线,也就是说在不同的阈值下,True Positive Rate和False Positive Rate的变化情况))我们只考虑判为正的情况时,分类器在正例和负例两个集合中分别预测,如果模型很好,在正例中预测,百分百为正例,⽽在负例中预测,百分0为...
在scikit-learn库中,`roc_auc_score`方法接受两个参数:真实标签和预测概率。在实际使用中,我们首先通过模型预测得到样本的预测概率,然后将真实标签和预测概率作为参数传入`roc_auc_score`方法,即可得到ROC-AUC值。以下是`roc_auc_score`方法的简单示例: ```python from sklearn.metrics import roc_auc_score y_...