在编码器端的注意力机制: 主要解决表征问题, 相当于特征提取过程, 得到输入的注意力表示. 一般使用自注意力(self-attention). 注意力机制实现步骤 第一步: 根据注意力计算规则, 对Q,K,V进行相应的计算. 第二步: 根据第一步采用的计算方法, 如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接, 如果是转...
在我们的例子中,我们可以将最后一个时间步的隐藏状态输入到一个softmax层,生成法文词汇的概率分布,并选择具有最高概率的词作为翻译结果。 二、自注意力机制 自注意力名称的由来:每个位置的自我关注和全局关联建模,能够更好地捕捉序列中的上下文信息和长距离依赖关系。相对于其他注意力机制,它具有全连接性、全局性和...
RNN 中的注意力机制增强了模型在进行预测时关注输入序列相关部分的能力。在传统的 RNN 中,隐藏状态负责捕获输入序列的整个上下文。注意力机制引入了额外的组件,可以动态地为输入序列的不同部分分配权重或重要性。这样,RNN 可以强调更多相关信息,并减少对序列中不太重要或不相关部分的依赖。注意力机制在机器翻译等任...
Attention机制其实就是将的Encoder RNN隐藏层状态加权后获得权重向量 ct ,额外加入到Decoder中,给Decoder RNN网络添加额外信息,从而使得网络有更完整的信息流。 特别说明:上文介绍的LuongAttention仅仅是注意力机制的一种具体实现,不代表Attention仅此一种。事实上Seq2Seq+Attention还有很多很玩法。望读者了解! 参考 完全...
还是以传统的RNN的seq2seq问题为例子,加性注意力是最经典的注意力机制,它使用了有一个隐藏层的前馈网络(全连接)来计算注意力分配: 乘法注意力:就是常见的用乘法来计算attention score: 乘法注意力不用使用一个全连接层,所以空间复杂度占优;另外由于乘法可以使用优化的矩阵乘法运算,所以计算上也一般占优。 论文中...
注意力机制是一个将编码器-解码器结构从固定长度的内部表征中解放出来的方法。它通过保持 LSTM 编码器对输入序列每一步的中间输出结果,然后训练模型学习如何选择性地关注输入,并将它们与输出序列中的项联系起来。换句话说,输出序列中的每一项都取决于输入序列中被选中的项。「论文中提出的模型在翻译的时候每生成一...
Attention(注意力机制) 图片展示的Encoder-Decoder框架是没有体现“注意力模型”的,所以可以把它看做是注意力不集中分心模型。因为在生成目标句子的单词时,不论生成哪个单词,它们使用的输入句子的语义编码C都是一样的,没有任何区别。而语义编码C是由原句子中的每个单词经过Encoder编码产生的,这意味着原句子中任意单词...
计算注意力的方法:通过将注意力视为一个 RNN,可以看到计算注意力的不同方法:在 O (1) 内存中逐个 token 循环计算(即顺序计算);或以传统方式计算(即并行计算),需要线性 O (N) 内存。由于注意力可以被看作是一个 RNN,因此计算注意力的传统方法也可以被看作是计算注意力多对一 RNN 输出的高效方法,即 RNN ...
【新智元导读】谷歌大脑团队的Chris Olah & Shan Carter 整理了 2016 年递归神经网络(RNN)的发展,总结了神经图灵机、注意力界面、自适应计算时间和神经编程器这四个使用注意力对常规 RNN 进行增强的模型,并使用动态图生动阐释了相关概念。他们认为,这四大模型会对接下来 RNN 发展产生重大影响。新智元提供本文中文翻译...
本文将会使用大量的图片和公式推导通俗易懂地讲解RNN,LSTM,Seq2Seq和attention注意力机制(结合colah's blog 和CS583),希望帮助初学者更好掌握且入门。 目录 RNN LSTM Seq2Seq 注意力机制 参考 RNN(递归神经网络) 我们知道人类并不是从零开始思考东西,就像你读这篇文章的时候,你对每个字的理解都是建立在前几个...