对RNAsq的read count数据进行PCA分析 目的:PCA分析可以得到样本之间的相关性和离散程度。 内容: 1 . 基因表达量数据进行标准化,用tpm和fpkm两种方法进行相对定量,后续分析我们一般会用tpm。 2 . 使用标准化后的tpm数据做主成分分析(PCA) 数据:RNASEQ上游分析得到的read count矩阵。
4.筛选高变基因(top1000) rv <- genefilter::rowVars(data)select <- order(rv, decreasing = TRUE)[seq_len(1000)]pca_data <- cbind(t(log10(data[select,]+1)),group) 5.进行主成分分析 expr_pca <- prcomp(pca_data[,1:1000],scale = T,center = T) 6.可视化——碎石图 fviz_screeplot(...
目的 :PCA分析可以得到样本之间的相关性和离散程度。内容: 1 . 基因表达量数据进行标准化,用tpm和fpkm两种方法进行相对定量,后续分析我们一般会用tpm。2 . 使用标准化后的tpm数据做主成分分析(PCA)数据 :RNASEQ上游分析得到的read count矩阵。工具 :Rstudio。步骤:TPM=(Ni/Li)*1000000/s...
4.筛选高变基因(top1000) rv <- genefilter::rowVars(data)select <- order(rv, decreasing = TRUE)[seq_len(1000)]pca_data <- cbind(t(log10(data[select,]+1)),group) 5.进行主成分分析 expr_pca <- prcomp(pca_data[,1:1000],scale = T,center = T) 6.可视化——碎石图 fviz_screeplot(...
上一期我们探讨了Bulk RNA-seq的价值和学习成本(第1期. 快2024年了,还有必要学习Bulk RNA-seq?),如果你认可了学习Bulk RNA-seq分析的必要性,那我们就一起来开始零基础学习之旅。今天的任务是主成分分析(PCA)图,如果时间紧,可以简单看看整体的分析流程;如果有时间,可以跟着我们的代码和数据,一起练习。