在RNA-seq中,主成分分析(PCA)是最常见的多元数据分析类型之一,这期主要介绍一下利用已有的表达差异数据如何分析,别着急,见下文。 1. 前言 1. 相关背景 在RNA-seq中,主成分分析(PCA)是最常见的多元数据分析类型之一。基因表达定量后获得了各样本中所有基因的表达值信息,随后我们通常会期望比较样本之间在基因表达值...
主成分分析的原理,相信同学们都知道,它(Principal Component Analysis, PCA)是一种线性降维算法,也是一种常用的数据预处理(Pre-Processing)方法。它的目标是是用方差(Variance)来衡量数据的差异性,并将差异性较大的高维数据投影到低维空间中进行表示。绝大多数情况下,我们希望获得两个主成分因子:分别是从数据差异性...
plotPCA()需要两个参数作为输入:DESeqTransform对象和intgroup,即元数据中包含有关实验样本组信息列的名称。 代码语言:text AI代码解释 # Plot PCA plotPCA(rld, intgroup="sampletype") PCA 默认情况下,plotPCA()使用前 500 个最易变的基因。您可以通过添加ntop=参数并指定您希望函数考虑的基因数量来更改此设置。
plotPCA()需要两个参数作为输入:DESeqTransform对象和intgroup,即元数据中包含有关实验样本组信息列的名称。 # Plot PCAplotPCA(rld,intgroup="sampletype") 默认情况下,plotPCA()使用前 500 个最易变的基因。您可以通过添加ntop=参数并指定您希望函数考虑的基因数量来更改此设置。 plotPCA()函数将只返回 PC1 ...
RNA-seq表达数据之样本PCA分析 Principal component analysis (PCA) 分析 主成分分析(PCA)帮助我们归纳总结和可视化数据集中的信息,这些数据包含由多个相互关联的变量描述的个体 / 观察主成分分析。 可以将每个变量视为不同的维度。 但如果您的数据集中有3个以上的变量,那么很难在多维超空间可视化。 主成分分析是...
plotPCA(rld,intgroup="condition") dev.off() #差异表达分析 dds=DESeq(dds) #sizeFactors(dds) res<-results(dds) res<-res[order(res$padj),] #table(res$padj<0.01) #将DEG转换为数据框格式,并去掉含NA的行 DEG<-as.data.frame(res)
WGCNA(Weighted Gene Co-Expression Network Analysis ),即加权基因共表达网络分析,用于寻找高度相关的基因构成的基因模块module,利用模块特征基因eigengene(模块内第一主成分)或模块内的关键基因Hub gene来总结这些模块,将模块与样本性状进行关联。 1.2 其他关键术语 ...
了解PCA(principal component analysis) 了解如何使用PCA和层次聚类评估样本质量 1. 质控 DESeq2工作流程的下一步是QC,其中包括样本和基因程度上,以对计数数据执行QC检查,以帮助我们确保样本或重复看起来良好。 2. 样本QC RNA-seq分析中一个有用的初始步骤通常是评估样本之间的整体相似性: ...
Modeling and analysis of RNA-seq data: a review from a statistical perspective 今天小编从统计学角度分别介绍下样本,基因,转录本和外显子水平相关的RNA-seq分析工具。 一、样本水平分析:转录组相似性 1、相关分析是测量生物样品转录组相似性的经典方法。最常用的度量是Pearson和Spearman相关系数。该分析首先计算任...
RNAseq背景知识(四)|主成分分析(PCA) 主成分分析是一种降维的方法,它将多个变量简化为少数、具有代表性的综合变量,以便于对整体基因表达情况进行描述、分析。通过主成分分析可以更直观的看到不同样本的整体差异。0 0 发表评论 发表 作者最近动态 桃花流水窅然去 2025-02-26 社保缴费年限对退休金的影响有多大?退休...