RNA-seq表达数据之样本PCA分析 Principal component analysis (PCA) 分析 主成分分析(PCA)帮助我们归纳总结和可视化数据集中的信息,这些数据包含由多个相互关联的变量描述的个体 / 观察主成分分析。 可以将每个变量视为不同的维度。 但如果您的数据集中有3个以上的变量,那么很难在多维超空间可视化。 主成分分析是...
为了方便以后选课的同学学习RNA-seq数据分析,减少学习过程中查找资料的时间成本以及试错成本,我们小组在老师的建议下,将我们的报告内容及RNA-seq数据分析的流程与原理,以及网络上一些优秀的资源整合到专栏内。通过阅读这一专栏,应当能掌握一套有效的RNA-seq数据分析流程,同时理解原理,我们也给出了在我们的小课题中实际...
graph = FALSE) PCAPlot <- fviz_pca_ind(PCAData, geom.ind = "point",#geom.ind = c(...
RNA-seq下游分析之 PCA图_欧阳火火的博客-CSDN博客 rm(list=ls())mydata <- read.table("C:/Users/gao/Desktop/all.id.txt",header =TRUE,quote='\t',skip = 1)smpleNames <- c('mesc_1','mesc_1','mesc_2','mesc_2','mesc_3','mesc_3','mesc_4','mesc_4','mesc_5','...
上一期我们探讨了Bulk RNA-seq的价值和学习成本(第1期. 快2024年了,还有必要学习Bulk RNA-seq?),如果你认可了学习Bulk RNA-seq分析的必要性,那我们就一起来开始零基础学习之旅。今天的任务是主成分分析(PCA)图,如果时间紧,可以简单看看整体的分析流程;如果有时间,可以跟着我们的代码和数据,一起练习。
在获得我们的高质量单细胞后,单细胞 RNA-seq (scRNA-seq) 分析工作流程的下一步是执行聚类。聚类的目标是将不同的细胞类型分成独特的细胞簇。为了进行聚类,我们确定了细胞之间表达差异最大的基因。然后,我们使用这些基因来确定哪些相关基因集是造成对细胞间的表达差异最大的原因。
内容: 1 . 基因表达量数据进行标准化,用tpm和fpkm两种方法进行相对定量,后续分析我们一般会用tpm。2 . 使用标准化后的tpm数据做主成分分析(PCA)数据 :RNASEQ上游分析得到的read count矩阵。工具 :Rstudio。步骤:TPM=(Ni/Li)*1000000/sum(Ni/Li+……..+ Nm/Lm)Ni:mapping到基因i上...
对RNAsq的read count数据进行PCA分析 目的:PCA分析可以得到样本之间的相关性和离散程度。 内容: 1 . 基因表达量数据进行标准化,用tpm和fpkm两种方法进行相对定量,后续分析我们一般会用tpm。 2 . 使用标准化后的tpm数据做主成分分析(PCA) 数据:RNASEQ上游分析得到的read count矩阵。
在获得我们的高质量单细胞后,单细胞 RNA-seq (scRNA-seq) 分析工作流程的下一步是执行聚类。聚类的目标是将不同的细胞类型分成独特的细胞簇。为了进行聚类,我们确定了细胞之间表达差异最大的基因。然后,我们使用这些基因来确定哪些相关基因集是造成对细胞间的表达差异最大的原因。在进行聚类之前,先...
查看不同分组的聚类情况:样本hclust 图、距离热图、PCA图、差异基因热图、相关性热图 承接上节RNA-seq入门实战(三):在R里面整理表达量counts矩阵和RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts 与 Salmon 在进行差异分析前需要进行数据检查,保证我们的下游分析是有意义的。