在scRNA-seq 分析中,我们将比较细胞内不同基因的表达以对细胞进行聚类。如果使用基于 3' 或 5' 液滴的方法,基因的长度不会影响分析,因为仅对转录物的 5' 或 3' 末端进行测序。但是,如果使用全长测序,则应考虑转录本长度。 主成分分析 (PCA) 主成分分析(PCA)是一种既强调相似性又强调变异的技术,用来在数...
rld1<- rlog(dds2) plotPCA(rld1, intgroup=c( "name","condition")) library(ggplot2) data1 <- plotPCA(rld1, intgroup=c("condition","name"), returnData=TRUE) percentVar1 <- round(100 * attr(data1, "percentVar")) p1<- ggplot(data1, aes(PC1, PC2, color=name)) + geom_poin...
内容: 1 . 基因表达量数据进行标准化,用tpm和fpkm两种方法进行相对定量,后续分析我们一般会用tpm。2 . 使用标准化后的tpm数据做主成分分析(PCA)数据 :RNASEQ上游分析得到的read count矩阵。工具 :Rstudio。步骤:TPM=(Ni/Li)*1000000/sum(Ni/Li+……..+ Nm/Lm)Ni:mapping到基因i上...
4.筛选高变基因(top1000) rv <- genefilter::rowVars(data)select <- order(rv, decreasing = TRUE)[seq_len(1000)]pca_data <- cbind(t(log10(data[select,]+1)),group) 5.进行主成分分析 expr_pca <- prcomp(pca_data[,1:1000],scale = T,center = T) 6.可视化——碎石图 fviz_screeplot(...
在获得我们的高质量单细胞后,单细胞 RNA-seq (scRNA-seq) 分析工作流程的下一步是执行聚类。聚类的目标是将不同的细胞类型分成独特的细胞簇。为了进行聚类,我们确定了细胞之间表达差异最大的基因。然后,我们使用这些基因来确定哪些相关基因集是造成对细胞间的表达差异最大的原因。在进行聚类之前,先...
查看不同分组的聚类情况:样本hclust 图、距离热图、PCA图、差异基因热图、相关性热图 承接上节RNA-seq入门实战(三):在R里面整理表达量counts矩阵和RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts 与 Salmon 在进行差异分析前需要进行数据检查,保证我们的下游分析是有意义的。
Principal component analysis (PCA) 分析 主成分分析(PCA)帮助我们归纳总结和可视化数据集中的信息,这些数据包含由多个相互关联的变量描述的个体 / 观察主成分分析。 可以将每个变量视为不同的维度。 但如果您的数据集中有3个以上的变量,那么很难在多维超空间可视化。
PCA图:说明分组存在非常明显的差异;层次聚类:也是如此,说明分组存在非常明显的差异。如果分组在3张图...
RNA-seq下游分析之 PCA图_欧阳火火的博客-CSDN博客 rm(list=ls())mydata <- read.table("C:/Users/gao/Desktop/all.id.txt",header =TRUE,quote='\t',skip = 1)smpleNames <- c('mesc_1','mesc_1','mesc_2','mesc_2','mesc_3','mesc_3','mesc_4','mesc_4','mesc_5','...
因为落在一个基因区域内的read数… oriRNA snakemake RNA-seq 批量(cutadapt-hisat2-featurecount) 一、Snakemake简介 可以用来写组学(RNA-seq,chip-seq等)上游分析(去接头,比对,计数/call peaks等)流程化代码的工具。它减少代码复写,提高工作效率。 二、基本语法 rule project: #… Jade...