承接上节RNA-seq入门实战(三):从featureCounts与Salmon输出文件获取counts矩阵在进行差异分析前需要进行数据检查,保证我们的下游分析是有意义的。 以下展示了样本hclust 图、距离热图、PCA图、前500差异性大的基因热图、相关性热图(选取了500高表达基因,防止低表达基因造成的干扰),确定我们不同样本间确实是有差异的。这...
DESeq2对样本级QC使用标准化计数的正则化对数变换(rlog),因为它调节了均值间的方差,从而改进了聚类。 img 注意:DESeq2文档建议大数据集(100个样本)使用方差稳定转换(vst)而不是rlog来进行计数转换,因为rlog函数可能运行太长时间,而vst()函数具有与rlog相似的属性,速度更快。 主成分分析PCA [1] 主成分分析(...
承接上节RNA-seq入门实战(三):从featureCounts与Salmon输出文件获取counts矩阵 在进行差异分析前需要进行数据检查,保证我们的下游分析是有意义的。 以下展示了样本hclust 图、距离热图、PCA图、前500差异性大的基因热图、相关性热图(选取了500高表达基因,防止低表达基因造成的干扰),确定我们不同样本间确实是有差异的。...
6. 呈现样本间的相关性 三、如何基于R生成热图? 下面将以“呈现组间具体的差异基因”为目的,展示基于R的实战过程。(想获得练习数据,可在公众号输入:Bulk RNA-seq练习数据3) 1.安装并加载R包(如果没有安装过相关R包,需要先安装,再加载) library(tidyverse) library(pheatmap) library(RColorBrewer) 2.加载数据...
RNA_seq 热图绘制 若已经拿到表达矩阵exprSet 若差异较大,进行log缩小不同样本的差距 1、热图全体 1##加载包2library(pheatmap)34##缩小表达量差距5exprSet <- log2(exprSet+1)67##取最大标准差前1000个基因名字8cg <-names(tail(sort(apply(exprSet,1,sd)),1000))910##标准化,只关注样品间基因差异,...
DESeq2工作流程中的下一个步骤是QC,它包括对计数数据执行样本级和基因级QC检查的步骤,以帮助我们确保样本/重复看起来良好。 img 样本水平QC RNA-seq分析的一个有用的初始步骤通常是评估样本之间的整体相似性: 哪些样本相似,哪些不同? 这符合实验设计的期望吗?
二 临床指标热图可视化 1,直接绘制 使用ComplexHeatmap绘制临床数据注释图 ,重点在于构建一个和临床数据相同列的0矩阵。 # 提取想展示的临床数据riskScore_cli2 <- riskScore_cli2 %>%select(riskScore:tumor_stage,Age) %>%select(-"age")# 构建列注释块ha=HeatmapAnnotation(df=riskScore_cli2)# 构建zero...
做RNAseq,蛋白组学等,当我们需要展示许多基因的表达谱变化时,可以绘制热图,可以绘制两组,多组,特定功能基因群热图,多个比较组差异倍数变化等热图的绘制,也可以选择性的展示特定基因。 4GO/PAthway常用展示图绘制 我们拿到差异基因,会对差异基因进行GO、Pathway富集分析,以了解基因参与的生物学过程及涉及到的通路。在写...
我们可以简单的把这张图理解为2个样本的RNAseq结果关联度散点图。X,Y轴分别是两个样本,每个点代表一个基因在两个样品中FPKM的对数值(FPKM是RNAseq中衡量基因表达高低的常用数值)。从这张图可以观察,偏离对角线的点越多,说明样品表达量的相关性越低,重复性越差;偏离对角线的点越少,则说明样品间表达量的相关性...
我们还在图4中将每个样本之间的Pearson相关性绘制为热图(使用NMF中的函数aheatmap)。我们按组(处理)和时间点(采样时间)对样本进行排序。 # Reorder genes on condition, time, and replicateord=order(meta$Group,meta$Timepoint,meta$Replicate)variance_filtered_data=variance_filtered_data[,ord]data_corr=cor(va...