转录组测序(RNA-Seq,RNA sequencing)是通过高通量测序技术对生物体内全部转录产物(包括mRNA、非编码RNA等)进行测序的技术。转录组测序能够定量检测基因表达、发现新的转录本、分析基因结构变异和识别基因表达调控网络,是揭示基因功能和调控机制的重要手段。一、转录组测序的概念与原理 转录组是指一个细胞、组织或生...
RNA-seq目前是测量细胞反应的最突出的方法之一。RNA-seq不仅能够分析样本之间基因表达的差异,还可以发现新的亚型并分析SNP变异。本教程[1]将涵盖处理和分析差异基因表达数据的基本工作流程,旨在提供设置环境和运行比对工具的通用方法。请注意,它并不适用于所有类型的分析,比对工具也不适用于所有分析。此外,本教程的重点...
RNA-Seq,即RNA测序技术,也称为转录组测序技术,是一种通过观察基因表达来分析整个基因组的技术。主要测序对象包括信使RNA(mRNA)、微RNA(miRNA)和非编码RNA(ncRNA),用高通量测序技术进行测序分析,反映出它们的表达水平。🚀 高通量测序技术 高通量测序技术(High-throughput sequencing),也称为“下一代”测序技术(Next...
虽然RNA-seq这个词通常包含很多不同的RNA相关的方法或生物应用,但DGE分析始终是它的主要应用(表1),并且是DGE研究的常规工具。 RNA-seq的广泛应用促进了对许多生物层面的理解,如揭示了mRNA剪接的复杂性、非编码RNA和增强子RNA调控基因表达的机制。RNA-seq的发展和进步一直离不开技术发展的支持(湿实验方面和计算分析...
了解从RNA提取到获取基因表达矩阵, 既RNA-seq分析的整个流程。 1. workflow 进行差异表达基因分析的前提是,获取代表基因表达水平的矩阵。因此在进行分析前,必须知道基因表达矩阵是如何产生的。 在本教程中,将会简要的介绍从原始测序读数到基因表达计数矩阵过程中,所采取的不同步骤。下图是整个分析过程的流程图。
RNA-seq的广泛应用促进了对许多生物层面的理解,如揭示了mRNA剪接的复杂性、非编码RNA和增强子RNA调控基因表达的机制。RNA-seq的发展和进步一直离不开技术发展的支持(湿实验方面和计算分析方面),且与先前的基于基因芯片的技术比起来,获得的信息更多、偏好性更小。到目前为止,已从标准的RNA-seq流程中衍生出多达100种不...
Bulk RNA-seq 分析的一个重要任务是分析差异表达基因,我们可以用omicverse包 来完成这个任务。对于差异表达分析而言,首先,我们可以先将 gene_id 改为 gene_name。其次,当我们的数据集存在批量效应时,我们可以使用 DEseq2的 SizeFactor 对其进行归一化,并使用 wilcoxon 的 t 检验来计算基因的 p 值。在这里,我们...
差异基因表达分析是一种常见的生信分析方法,是每个生信人都必须掌握的技术,本文将使用R语言演示如何利用limma包分析TCGA的RNA基因表达矩阵。 首先,准备好所需的数据,如下图所示,基因表达数据为一个包含样品与基因的矩阵。 首先,打开R之后先加载所需的R包。其中,limma是差异基因表达分析的一个常用R包,ggplot2和ggrep...
最终获得的Rnaseq.diff.csv包含了每个差异基因在各个样品中的表达量以及差异倍数