在RNA-seq中,主成分分析(PCA)是最常见的多元数据分析类型之一,这期主要介绍一下利用已有的表达差异数据如何分析,别着急,见下文。 1. 前言 1. 相关背景 在RNA-seq中,主成分分析(PCA)是最常见的多元数据分析类型之一。基因表达定量后获得了各样本中所有基因的表达值信息,随后我们通常会期望比较样本之间在基因表达值的整体相似性或者差异程度
主成分分析 (PCA) 是一种用于强调变化并在数据集中降维的技术。这是一种非常重要的技术,用于质量控制和Bulk RNA-seq和单细胞RNA-seq数据的分析。 3.1. PCA plots 本质上,如果两个样本的基因表达水平相似,这些基因对给定 PC(主成分)表示的变异有显著贡献,则它们将在表示该 PC 的轴上靠近绘制。因此,我们期望生...
Principal component analysis (PCA) 分析 主成分分析(PCA)帮助我们归纳总结和可视化数据集中的信息,这些数据包含由多个相互关联的变量描述的个体 / 观察主成分分析。 可以将每个变量视为不同的维度。 但如果您的数据集中有3个以上的变量,那么很难在多维超空间可视化。
与距离矩阵紧密相连的是主成分分析(PCA)图,它将样本映射在由前两个主成分构成的二维平面上。利用这种图表,我们可以直观地观察实验协变量以及批次效应所产生的整体影响。 plotPCA(vsd, intgroup=c("condition", "type")) 还可以使用 ggplot 函数自定义 PCA 图。 pcaData <- plotPCA(vsd, intgroup=c("conditio...
主成分分析 (PCA) 是一种用于强调变化并在数据集中降维的技术。这是一种非常重要的技术,用于质量控制和Bulk RNA-seq和单细胞RNA-seq数据的分析。 3.1. PCA plots 本质上,如果两个样本的基因表达水平相似,这些基因对给定 PC(主成分)表示的变异有显著贡献,则它们将在表示该 PC 的轴上靠近绘制。因此,我们期望生...
上一期我们探讨了Bulk RNA-seq的价值和学习成本(第1期. 快2024年了,还有必要学习Bulk RNA-seq?),如果你认可了学习Bulk RNA-seq分析的必要性,那我们就一起来开始零基础学习之旅。今天的任务是主成分分析(PCA)图,如果时间紧,可以简单看看整体的分析流程;如果有时间,可以跟着我们的代码和数据,一起练习。
目的 :PCA分析可以得到样本之间的相关性和离散程度。内容: 1 . 基因表达量数据进行标准化,用tpm和fpkm两种方法进行相对定量,后续分析我们一般会用tpm。2 . 使用标准化后的tpm数据做主成分分析(PCA)数据 :RNASEQ上游分析得到的read count矩阵。工具 :Rstudio。步骤:TPM=(Ni/Li)*1000000/s...
RNAseq背景知识(四)|主成分分析(PCA) 主成分分析是一种降维的方法,它将多个变量简化为少数、具有代表性的综合变量,以便于对整体基因表达情况进行描述、分析。通过主成分分析可以更直观的看到不同样本的整体差异。0 0 发表评论 发表 作者最近动态 桃花流水窅然去 2025-02-26 社保缴费年限对退休金的影响有多大?退休...