在7月22日发表于Nature杂志上的一篇论文中[1],DeepMind与合作者发布了由新一代AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。该数据库包含了AlphaFold系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物,其中,在人类蛋白质组方面,AI对98.5%的(20 296种)人类蛋...
在7月22日发表于Nature杂志上的一篇论文中[1],DeepMind与合作者发布了由新一代AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。该数据库包含了AlphaFold系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物,其中,在人类蛋白质组方面,AI对98.5%的(20 296种)人类蛋白的结构...
在7月22日发表于Nature杂志上的一篇论文中[1],DeepMind与合作者发布了由新一代AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。该数据库包含了AlphaFold系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物,其中,在人类蛋白质组方面,AI对98.5%的(20 296种)人类蛋白的结构...
在7月22日发表于Nature杂志上的一篇论文中[1],DeepMind与合作者发布了由新一代AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。该数据库包含了AlphaFold系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物,其中,在人类蛋白质组方面,AI对98.5%的(20 296种)人类蛋白的结构...
RNA 3D structure prediction is a long-standing challenge. Inspired by the recent breakthrough in protein structure prediction, we developed trRosettaRNA, an automated deep learning-based approach to RNA 3D structure prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D geometries...
UTR in mRNAs.However, it is still unknow for most RBPs to get their targeting sites in transcriptome.So, it is necessary to develop a method that could predict RNA-protein interaction.If 3D structures of protein and RNA are available, could we predict the 3D RNA-protein complex structure?
Structure and Function of DNA Methyltransferases This feature permits the prediction of tertiary structure for other DNA, RNA, protein, and small-molecule methyltransferases from their amino acid sequences,... XD Cheng - 《Annual Review of Biophysics & Biomolecular Structure》 被引量: 548发表: 1995...
Scaffolding protein functional sites using deep learning. Science. 2022, 377(6604):387-394. trRosetta and trDesignImproved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A. 2020, 117 (3) : 1496-1503. ...
近日,来自深圳湾实验室系统与物理生物学研究所的周耀旗团队在《国家科学评论》上发表题为“3=1+2: How the Divide Conquered de Novo Protein Structure Prediction and What’s Next?”的综述,梳理了近年来蛋白质预测领域的发展,并对 AlphaFold2 之后,该领域未来的方向做出展望。
1.Hong, L., Hu, Z., Sun, S. et al. Fast, sensitive detection of protein homologs using deep dense retrieval. Nature Biotechnology (2024). https://doi.org/10.1038/s41587-024-02353-6 2.Shen, T., Hu, Z., Sun, S. et al. Accurate RNA 3D structure prediction using a language model...