到目前为止,我们已经对比了 RMSProp 和 Momentum 两种方法。尽管 Momentum 加速了我们对极小值方向的搜索,但 RMSProp 阻碍了我们在振荡方向上的搜索。 Adam 或 Adaptive Moment Optimization:自适应力矩优化. 算法将 Momentum 和 RMSProp 两种算法结合了起来。这里是迭代方程。 图片 我们计算了每个梯度分量的指数平均和...
Adam 或 Adaptive Moment Optimization 算法将 Momentum 和 RMSProp 两种算法结合了起来。这里是迭代方程。 我们计算了每个梯度分量的指数平均和梯度平方指数平均(方程 1、方程 2)。为了确定迭代步长我们在方程 3 中用梯度的指数平均乘学习率(如 Momentum 的情况)并除以根号下的平方指数平均(如 Momentum 的情况),然后...
在上面的三种方法中,尽管 Adam 算法在论文中被认为是最有前景的算法,但是 Momentum 方法貌似更主流一些。实践结果表明,在给定损失函数的情况下,三种算法都能收敛到不同的局部最优极小值。但是用带 Momentum 的 SGD 算法比 Adam 算法找到的极小值更加平坦,而...
到目前为止,我们已经对比了 RMSProp 和 Momentum 两种方法。尽管 Momentum 加速了我们对极小值方向的搜索,但 RMSProp 阻碍了我们在振荡方向上的搜索。 Adam 或 Adaptive Moment Optimization 算法将 Momentum 和 RMSProp 两种算法结合了起来。 这里是迭代方程。 我们计算了每个梯度分量的指数平均和梯度平方指数平均(方程 ...
现在再回过头来看Momentum算法的迭代更新公式: {v=βv+(1−β)dww=w−αv{v=βv+(1−β)dww=w−αv dwdw是我们计算出来的原始梯度,vv则是用指数加权平均计算出来的梯度。这相当于对原始梯度做了一个平滑,然后再用来做梯度下降。实验表明,相比于标准梯度下降算法,Momentum算法具有更快的收敛速度。为什么...
SGD 是最普通的优化器, 也可以说没有加速效果, 而 Momentum 是 SGD 的改良版, 它加入了动量原则. 后面的 RMSprop 又是 Momentum 的升级版. 而 Adam 又是 RMSprop 的升级版. 不过从这个结果中我们看到, Adam 的效果似乎比 RMSprop 要差一点. 所以说并不是越先进的优化器, 结果越佳。
Adam 或 Adaptive Moment Optimization 算法将 Momentum 和 RMSProp 两种算法结合了起来。 这里是迭代方程。 我们计算了每个梯度分量的指数平均和梯度平方指数平均(方程 1、方程 2)。为了确定迭代步长我们在方程 3 中用梯度的指数平均乘学习率(如 Momentum 的情况)并除以根号下的平方指数平均(如 Momentum 的情况),然...
Nesterov Momentum Adagrad Adadelta RMSprop Adam 在介绍这几种优化方法之前,必须先介绍下 指数加权平均(Exponentially weighted average) ,因为这个算法是接下来将要介绍的三个算法的重要组成部分。 一、 指数加权平均(Exponentially weighted average) 指数加权平均是处理时间序列的常用工具,下面用一个例子来引入指数加权平...
2. Momentum SGD方法的一个缺点是其更新方向完全依赖于当前batch计算出的梯度,因而十分不稳定。Momentum算法借用了物理中的动量概念,它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。这样一来,可以在一定程度上增加稳定性,从而学习地更快,并且还有一...
Adam 或 Adaptive Moment Optimization 算法将 Momentum 和 RMSProp 两种算法结合了起来。 这里是迭代方程。 我们计算了每个梯度分量的指数平均和梯度平方指数平均(方程 1、方程 2)。为了确定迭代步长我们在方程 3 中用梯度的指数平均乘学习率(如 Momentum 的情况)并除以根号下的平方指数平均(如 Momentum 的情况),然...