近日,强化学习之父、加拿大计算机科学家 Richard S. Sutton 在其个人网站上发文The Bitter Lesson,指出了过去 70 年来 AI 研究方面的苦涩教训:我们过于依靠人类知识了。 他认为,过去 70 年来,AI 研究走过的最大弯路,就是过于重视人类既有经验和知识,研究人员在训练 AI 模型时,往往想将人类知识灌输给智能体,而...
对此,著名机器人专家 Rodney Brooks 撰文反驳,阐述了 Sutton 观点错误的六大原因。 The Bitter Lesson 还是 A Better Lesson? 近日,强化学习之父、加拿大计算机科学家 Richard S. Sutton 在其个人网站上发文The Bitter Lesson,指出了过去 70 年来 AI 研究方面的苦涩教训:我们过于依靠人类知识了。 参考阅读: 新智元:...
Sutton观点错误的六大原因 就在上周,Rich Sutton 发表了一篇题为《苦涩的教训》(The Bitter Lesson) 的短文。我打算尽量把这篇评论写得比他的帖子更短。Sutton 在强化学习领域有着长期而持续的贡献。 在他的文章中,Sutton 用了很多很好的例子来论证,在人工智能 70 年的历史中,更多的计算和更少的内置知识总是构...
Sutton 是 DeepMind 杰出研究科学家,阿尔伯塔大学计算机科学教授。他被誉为「强化学习教父」。近日,他的一篇文章《苦涩的教训》探讨了人工智能近几十年来发展所走过的弯路。对于未来,他给出了自己的看法:利用算力才是王道,在其基础上搜索和算法才能带来技术水平的长期提升。 机器之心整理,作者:Richard S. Sutton,机器...
Richard S. Sutton 是 DeepMind 杰出研究科学家,阿尔伯塔大学计算机科学教授。他被誉为「强化学习教父」。近日,他的一篇文章《苦涩的教训》探讨了人工智能近几十年来发展所走过的弯路。对于未来,他给出了自己的看法:利用算力才是王道,在其基础上搜索和算法才能带来技术水平的长期提升。
AI 先驱 Rich Sutton:人工智能的苦涩教训 Richard S. Sutton 是 DeepMind 杰出研究科学家,阿尔伯塔大学计算机科学教授。他被誉为「强化学习教父」。近日,他的一篇文章《苦涩的教训》探讨了人工智能近几十年来发展所走过的弯路。对于未来,他给出了自己的看法:利用算力才是王道,在其基础上搜索和算法才能带来技术水平的...
人工智能专家 Rich Sutton 2019年曾有雄文"痛苦的教训" (The bitter lesson),总结过去七十年来人工智能研究的教训,其核心观点是: 算力的大规模进步会碾压各种局部算法的改进,但研究者往往会假设算力不会改变太多,用自己主观经验和局部知识去改进 AI, 短期内会收获一些进步,研究者会有成就感,但这些改进一般最终遭遇...
One thing that should be learned from the bitter lesson is the great power of general purpose methods,of methods that continue to scale with increased computation even as the available computation becomes very great.The two methods that seem to scale arbitrarily in this way are search and ...
强化学习之父Richard Sutton总结AI研究“苦涩教训”,认为利用算力才是王道,不应依靠人类知识。对此,著名机器人专家Rodney Brooks 撰文反驳,阐述了Sutton观点错误的六大原因。 The Bitter Lesson还是A Better Lesson? 近日,强化学习之父、加拿大计算机科学家 Richard S. Sutton 在其个人网站上发文The Bitter Lesson,指出了...
【新智元导读】强化学习之父Richard Sutton总结AI研究“苦涩教训”,认为利用算力才是王道,不应依靠人类知识。对此,著名机器人专家Rodney Brooks 撰文反驳,阐述了Sutton观点错误的六大原因。 The Bitter Lesson还是A Better Lesson? 近日,强化学习之父、加拿大计算机科学家 Richard S. Sutton 在其个人网站上发文The Bitter...