因为系统能量产生和传送方式不同,对应的RFID标签天线主要可分为近场感应线圈天线和远场辐射天线。感应耦合系统使用的是近场感应线圈天线,由多匝电感线圈组成,电感线圈和与其相并联的电容构成并联谐振回路以耦合最大的射频能量;微波辐射系统使用的远场辐射天线的种类主要是偶极子天线和缝隙天线,远场辐射天线通常是谐振式...
RFID标签由专用的IC芯片和一根连接在芯片两端上的天线组成。在RFID标签天线设计中,天线与芯片之间的阻抗匹配程度决定着RFID系统性能指标,标签小型化要求其天线小型化,标签天线小型化是标签设计者永远追求的目标。 近来,有一些标签天线设计的报道,例如折叠型偶极天线、V型偶极天线、倒F型天线、环型天线和分形天线等等[1-...
每个盒子两个天线足够适合门禁装置探测,这样局部结构的影响变得不再重要,因为门禁装置的读卡机天线被固定在仓库的出入,并且直接指向贴标签的物体。 距离 RFID天线的增益和是否使用有源的标签芯片将影响系统的使用距离。乐观的考虑,在电磁场的辐射强度符合UK的相关标准时,2.45GHz 的无源情况下,全波整流,驱动电压不大于3...
其实标签天线设计并不难,只要掌握其等效模型,就能找到天线设计大门的入口了。1.偶极子标签构成分析 普通材质的超高频RFID标签天线多为偶极子天线,这是因为偶极子天线设计简单且与标签的尺寸要求接近。如图4-61所示,为一个常见的偶极子天线标签,从天线设计角度分析,共由4部分组成,分别是标签芯片、偶极子天线、电...
图1:RFID网络结构框架图。由于低频和高频频段的射频识别系统采用的是电磁场耦合模式,所以系统中的天线都采用线圈形式。采用这种形式的主要原因如下:1.电磁场的耦合在线圈之间比较紧密:2.天线采用线圈的形式进一步减小了天线的体积进而减小了标签的体积:3.标签芯片的特性要求标签天线具有一定的电抗。在超高频和微波...
设计标签天线的第一步是构造标签芯片的电感线圈,电感线圈的主要功能之一是设置谐振以匹配芯片的电容。电感线圈的形状可以采取任何形式,只要它完成一个闭环。设计电感线圈时不必太关注是否与芯片在工作频率点谐振,这是因为一旦电感线圈连接到偶极子,其谐振频率会发生改变。电感线圈有三个设计参数:线宽、环路面积(内圈...
2.2标签天线设计的一般步骤 根据设计要求(标签尺寸、工作频带、 匹配芯片、应用条件等由要求提出),确定设计方案及目标参数,建立天线模型,并对天线模型进行仿真计算。再根据仿真计算结果进行调整设计模型,以达到预期目标参数。天线的设计通常是条件确定的,即各类材料参数、结构分布均为已知,否则设计无从入手。RFID标签应用范...
RFID技术在现代物联网中扮演着越来越重要的角色,而其核心组成部分之一——天线的设计和应用,直接影响着系统的性能和应用范围。RFID标签天线根据不同的工作原理和应用需求,主要可分为近场感应线圈天线和远场辐射天线两大类。近场感应线圈天线主要应用于中低频近距离系统,而远场辐射天线则适用于高频和微波频段的远距离...
1 UHF RFID标签天线设计理论原则 1.1 阻抗共轭匹配 电子标签需从阅读器天线上得到电磁波能量来响应标签芯片,因此在电子标签芯片上有一小部分用来检测标签天线上的感应电动势或者感应电压的电路,并通过二极管电路整流,再经过电压放大,最后读取标签信息。天线设计无需知道芯片内部结构,只需知道芯片封装后的芯片阻抗值的大小...
超高频RFID标签天线的性能主要取决于随频率变化而变化的标签芯片复数阻抗。在天线设计过程中,为了满足设计要求,必须密切关注标签的识别范围。由于天线大小和工作频率限制了天线的最大可达增益和带宽,所以必须对标签性能进行优化,以便满足设计要求。通常,不同材料不同的工作频段上,可调谐的天线设计更倾向于为标签制造的...