1 简介:Retrieval-based LMs = Retrieval + LMs 首先对于一个常规的(自回归)语言模型,其任务目标为通过计算P(xn|x1,x2,...,xn−1)并加以采样来预测句子中的下一个token,以此来完成对于整个句子的生成。 掩码语言模型/编码器-解码器语言模型的概率计算方式与此不同,但在此不做过多讨论。 而检索增强的语言...
本文主要是对 ACL 2023 Tutorial: Retrieval-based Language Models and Applications部分的Section 3: Retrieval-based LMs: Architecture进行梳理总结Roadmap检索式LM的分类nearest-neighbor LMretrieve and rea…
This paper proposes a Long-term knowledge-based Multimedia retrieval System (LMS) based on Latent Semantic Indexing (LSI) and human interaction (RF). Experiments show the effectiveness of the proposed system.doi:10.1504/IJASS.2007.019304Xin Chen...
Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, ... Xing, Yun,Li, Yiheng,Laptev, Ivan,... 被引量: 0发表: 2024年 Obsessive-Compulsive Disorder: The Process of Parental Adaptation and Implication...
Language models (LMs) are computational models that have the capability to understand and generate human language. Typically, large language models (LLMs) refer to transformer language models that contain hundreds of billions of parameters, which are trained on massive text data [29]. The advent ...
(dterf(sarr=bea=sadt0ing0a.8b.nd8s7ai7ifi,(ng,rcRdnRa=MinMf(0irccSS.e=a8EEn1le0,=c=v.eR8e221lMl22e,ovmRSmfeEM0glg.·o0=L·SfL5E−201−(,6.r=10R,=m5R2R(60gMrR.·8m=LMS0−0Eg–1S.,0·8=LER.085−–R7=410,M%,.p58R4S)7<%RE,o0pbM)=.t0http-equiv="content-...
Different tools, statistical and physical, have been implemented and intercompared and their ability to retrieve total columnar ozone has been checked by further comparison with satellite UV sensors. The study has been based on a suitable set of interferometric monitoring of greenhouse gases, ...
基于contrastive learning的思想,模型选择双塔双塔BERT,使用in-batch training的方式进行训练,获取数据集合对应的embedding,然后使用FAISS建立索引。损失函数如下: L(qi,pi+,pi,1−,...,pi,n−)=−logesim(qi,pi+)esim(qi,pi+)+∑j=1nesim(qi,pi,j−) 样本选择 这里的数据是Question-Answer数据,正样...
Atlas主要针对LLM引入retriever,通过联合预训练retriever和LLM,在广泛的知识密集型任务上具有强大的few-shot学习能力。 模型基于两个子模型:retriever和LM。首先使用retriever从大型文本语料库中检索最相关的文档。然后,这些文档与query(query置于文档前)一起送入到语言模型,生成输出。