1. ResNet50的参数量 ResNet50是由Kaiming He等人开发的,它是由50个残差模块组成,用3×3的卷积连接模块变形到1×1,最后一层由全连接层组成。该网络的参数量是25,636,712个,其中20,024,384个参数位于残差模块中,5,612,328个参数位于全连接层中,24,000个参数位于1×1的卷积连接中。 2.响参数量的关键因素
return ResNet(BasicBlock, [2, 2, 2, 2]) def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3]) def ResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) def ResNet101(): return ResNet(Bottleneck, [3, 4, 23, 3]) def ResNet152(): return ResNet(Bottleneck, [3, ...
##(输入通道,输出通道,卷积核大小,stride,padding) class ResNet50(nn.Module): # 实现主module:ResNet34 # ResNet50包含多个layer,每个layer又包含多个residual block # 用子module实现residual block,用_make_layer函数实现layer def __init__(self, num_classes=120): super(ResNet50, self).__init__(...
与ResNet34相比,ResNet50的参数量更大,达到了25,636,712个。其中,残差模块中的参数占据了绝大部分,约为20,024,384个。这些残差模块由3×3的卷积连接模块和1×1的激活函数组成,是ResNet50性能提升的关键因素。尽管ResNet50的参数量更大,但其性能通常也更为优越,能够在更短的时间内达到更低的Top-5错误率。
在量化过程中,ResNet50模型的参数包括权重和偏置等,需要进行量化处理。量化参数可以是8位定点数、16位浮点数或其他指定的位数和格式。通过合理的量化参数设置,可以保证在减小存储和计算开销的尽量保持模型的识别准确率。 三、ResNet50模型的量化参数优化 对ResNet50模型的量化参数进行优化,需要考虑以下几个方面: 1、...
尝试搭建了VGG16和Resnet50:发现resnet50的参数量小于VGG16,有些拿不准对错?是因为resnet的瓶颈结构吗? 参数量如下: ResNet-50: Total PARAMs: 23518273(23.5183M) Total FLOPs: 8188710400(8.19G) VGG-16: 0 收藏 回复 全部评论(29) 时间顺序 AIStudio810258 #2 回复于2020-10 当然,resnet比vgg...
VisionTran是一个基于Transformer的视觉识别模型,它旨在通过使用更小的参数量来提高模型的性能和效率。VisionTran与ResNet18、ResNet50和ResNet101在相似参数量的情况下进行了比较。VisionTran的设计目标是在保持较高性能的同时减少模型的复杂度和计算
2p1%22%3A%22102326622p2%22%3A%222001assVJLoW^%7B%22p1%22p3^OTN
3p22%C2%22%a100222%A3%22%2p22%C2%22%r662320122%A3%22%1p22%B7%^WoLJVssNTO^ ...