1.任何经典的网络都有其不可取代的一个方面,如resnet的残差结构,由于他所处的时代,大家都是很暴力的一层又一层的叠加网络深度,但是任何网络有一个理论极限深度(或许是这样),但是过深的网络并不能带来准确率的增长,只会增加参数的冗余,比如VGG作为Resnet的前置网络基础,整个网络含有一千多万的参数,实在是太多了...
Inception 的第一个版本是 GoogLeNet,也就是前面提及的赢得了 ILSVRC 2014 比赛的 22 层网络。一年之后,研究者在第二篇论文中发展出了 Inception v2 和 v3,并在原始版本上实现了多种改进——其中最值得一提的是将更大的卷积重构成了连续的更小的卷积,让学习变得更轻松。比如在 v3 中,5×5 卷积被替换成了两...
conv1:由一个为步长为2的7x7通道数为64的卷积组成,conv1将输入为224x224x3的图片转换为112x112x64 conv2:由一个步长为2的3x3最大池化卷积和堆叠的block组成,输出的size为56x56 conv3:由堆叠的block组成,输出的size为28x28 conv4:由堆叠的block组成,输出的size为14x14 conv5:由堆叠的block组成,输出的siz...
Inception v2 Inception v2 和 Inception v3 来自同一篇论文《Rethinking the Inception Architecture for Computer Vision》,作者提出了一系列能增加准确度和减少计算复杂度的修正方法。 在这一篇论文中,作者表示非常深的卷积网络自 2014 年以来就成为了计算机视觉领域的主流,它在各种基准测试中都获得了非常多的提升。只要...
总结:ResNet是一种革命性的网络结构,不在局限于inception-v2~v3的小修小补,而是从一种全新的残差角度来提升训练效果。个人认为它的影响力要远大于之前提出的inception v2和v3,之后发表的inception-v4、DenseNets和Dual Path Network都是在此基础上的衍生,不夸张地说ResNet开启了图像识别的一个全新的发展发向。
The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet,
Inception v3 + Resnet 结合 Stam块,更简单了 3种Inception-resnet块:加入直连,更简单,通道统一 核心结构 Stem块,更简单了,没有分支,只有1*1、3*3和pooling。 图15是Inception-ResNet-v1 和 Inception-ResNet-v2的总网络图,与Inception v4相比只是Inception-resnet块的数量不一样。
结合面片卷积方法和上下采样方法,像VGG、ResNet、DeepLabV3+这样经典2D卷积网络,就可以轻松迁移到3D模型的深度学习中。 值得一提的是,SubdivNet方法是基于清华大学的深度学习框架计图(Jittor)实现的。其中,计图框架提供了高效的重索引算子,无需额外的C++代码,即可实现邻域索引。
【用Caffe实现的ResNet-v3】“ResNeXt - Reproduce ResNet-v3(Aggregated Residual Transformations for Deep Neural Network) with Caffe” by Terry Chen GitHub:http://t.cn/RIIIELN
[10]. G. Huang, Y. Sun, Z. Liu, D. Sedra and K. Q. Weinberger. Deep Networks with Stochastic Depth. arXiv:1603.09382v3,2016.[11]. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. ...