A Lightweight Network Model Based on an Attention Mechanism for Ship-Radiated Noise Classification 注意力机制通过让模型关注图像关键区域提升了识别精度,而轻量级残差网络通过减少参数和计算量,实现了在低资源消耗下的优秀性能。 结合注意力机制与轻量级残差网络,既能让模型能够更高效地关注输入数据中的关键信息,提升...
A Lightweight Network Model Based on an Attention Mechanism for Ship-Radiated Noise Classification 方法:本文提出了一种轻量级的船舶辐射噪声分类网络模型,称为LW-SEResNet10。通过模型设计,实现了分类模型的高准确性和高效率。该模型基于ResNet,通过减少残差单元的数量来实现轻量化。采用注意机制和ReLU6激活函数作...
这就带来了你可能已经见过的著名 ResNet(残差网络)模块: ResNet 模块 ResNet 的每一个「模块(block)」都由一系列层和一个「捷径(shortcut)」连接组成,这个「捷径」将该模块的输入和输出连接到了一起。然后在元素层面上执行「加法(add)」运算,如果输入和输出的大小不同,那就可以使用零填充或投射(通过 1×1 ...
该模型整合了CNN、BiLSTM、Attention、ResNet模块的各自特点,首先利用CNN提取短期电力数据的特征向量,学习潜在的特征关系,将提取的特征向量作为BiLSTM网络的输入,通过Attention机制加强关键信息对负荷的影响,利用ResNet进行残差运算,让模型学习残差,...
第一个贡献点:提出了split-attention blocks构造的ResNeSt,与现有的ResNet变体相比,不需要增加额外的计算量。而且ResNeSt可以作为其它任务的骨架。 第二个贡献点:图像分类和迁移学习应用的大规模基准。 利用ResNeSt主干的模型能够在几个任务上达到最先进的性能,即:图像分类,对象检测,实例分割和语义分割。 与通过神经架构...
第一个贡献点:提出了split-attention blocks构造的ResNeSt,与现有的ResNet变体相比,不需要增加额外的计算量。而且ResNeSt可以作为其它任务的骨架。 第二个贡献点:图像分类和迁移学习应用的大规模基准。 利用ResNeSt主干的模型能够在几个任务上达到最先进的性能,即:图像分类,对象检测,实例分割和语义分割。 与通过神经架构...
SSD 改进:backbone增加resnet,并针对resnet加入attention机制,为了充分利用细节特征和语义特征,还加入了特征融合模型 - Robust-Jay/SSD-Resnet-Attention-FeatureFusion
可以说,Transformer结构继RNN、CNN(以及其一系列变体LSTM、GRU、ResNet、DenseNet等)之后,在Inductive Bias方向上打开了一个新世界的大门。Transformer主要特点:(1)通过Self-Attention,每个词都和所有词计算Attention,因此不论序列中词与词之间的距离有多长,他们之间的最大路径长度都为1,因此可以捕获更长的依赖关系。(2...
第一个贡献点:提出了split-attention blocks构造的ResNeSt,与现有的ResNet变体相比,不需要增加额外的计算量。而且ResNeSt可以作为其它任务的骨架。 第二个贡献点:图像分类和迁移学习应用的大规模基准。 利用ResNeSt主干的模型能够在几个任务上达到最先进的性能,即:图像分类,对象检测,实例分割和语义分割。 与通过神经架构...
第一个贡献点:提出了split-attention blocks构造的ResNeSt,与现有的ResNet变体相比,不需要增加额外的计算量。而且ResNeSt可以作为其它任务的骨架。 第二个贡献点:图像分类和迁移学习应用的大规模基准。 利用ResNeSt主干的模型能够在几个任务上达到最先进的性能,即:图像分类,对象检测,实例分割和语义分割。 与通过神经架构...