A Lightweight Network Model Based on an Attention Mechanism for Ship-Radiated Noise Classification 方法:本文提出了一种轻量级的船舶辐射噪声分类网络模型,称为LW-SEResNet10。通过模型设计,实现了分类模型的高准确性和高效率。该模型基于ResNet,通过减少残差单元的数量来实现轻量化。采用注意机制和ReLU6激活函数作...
这就带来了你可能已经见过的著名 ResNet(残差网络)模块: ResNet 模块 ResNet 的每一个「模块(block)」都由一系列层和一个「捷径(shortcut)」连接组成,这个「捷径」将该模块的输入和输出连接到了一起。然后在元素层面上执行「加法(add)」运算,如果输入和输出的大小不同,那就可以使用零填充或投射(通过 1×1 ...
A Lightweight Network Model Based on an Attention Mechanism for Ship-Radiated Noise Classification 方法:本文提出了一种轻量级的船舶辐射噪声分类网络模型,称为LW-SEResNet10。通过模型设计,实现了分类模型的高准确性和高效率。该模型基于ResNet,通过减少残差单元的数量来实现轻量化。采用注意机制和ReLU6激活函数作...
该模型整合了CNN、BiLSTM、Attention、ResNet模块的各自特点,首先利用CNN提取短期电力数据的特征向量,学习潜在的特征关系,将提取的特征向量作为BiLSTM网络的输入,通过Attention机制加强关键信息对负荷的影响,利用ResNet进行残差运算,让模型学习残差,...
第一个贡献点:提出了split-attention blocks构造的ResNeSt,与现有的ResNet变体相比,不需要增加额外的计算量。而且ResNeSt可以作为其它任务的骨架。 第二个贡献点:图像分类和迁移学习应用的大规模基准。 利用ResNeSt主干的模型能够在几个任务上达到最先进的性能,即:图像分类,对象检测,实例分割和语义分割。 与通过神经架构...
SSD 改进:backbone增加resnet,并针对resnet加入attention机制,为了充分利用细节特征和语义特征,还加入了特征融合模型 - Robust-Jay/SSD-Resnet-Attention-FeatureFusion
VIT:多模态的挖坑之作 | 再回来读一遍VIT的论文,才发现它真正的价值不在于把准确率提高了几个点(因为和ResNet相比确实大差不差)或者把训练成本较CNN降了多少卡天。而在于它给多模态的发展挖了一个坑,给大一统的方向做了初步证明。尤其是实验部分对位置编码和Attention的可视化,直接明了表示出了Attention对卷积替代...
第一个贡献点:提出了split-attention blocks构造的ResNeSt,与现有的ResNet变体相比,不需要增加额外的计算量。而且ResNeSt可以作为其它任务的骨架。 第二个贡献点:图像分类和迁移学习应用的大规模基准。 利用ResNeSt主干的模型能够在几个任务上达到最先进的性能,即:图像分类,对象检测,实例分割和语义分割。 与通过神经架构...
第一個貢獻點:提出了split-attention blocks構造的ResNeSt,與現有的ResNet變體相比,不需要增加額外的計算量。而且ResNeSt可以作為其它任務的骨架。 第二個貢獻點:影像分類和遷移學習應用的大規模基準。 利用ResNeSt主幹的模型能夠在幾個任務上達到最先進的效能,即:影像分類,物件檢測,例項分割和語義分割。 與通過神經架構...