# 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1=pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2=pandas.read_csv(file_path)print(df2)# 读取url地址df3=pandas.read_csv('http://127.0.0.1:8000/...
df6 = pandas.read_csv('data2.csv', header=None) print(df6) names自定义列名 names自定义列名,如果header=None,则可以使用该参数。 df6 = pandas.read_csv( 'data2.csv', header=None, names=['姓名', '性别', '年龄', '邮箱']) print(df6) 如果有header,也可以使用names自定义列名 df7 = ...
df2 = pandas.read_csv(file_path)print(df2)# 读取url地址df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv')print(df3)# 读取文件对象withopen('data.csv', encoding='utf8')asfp: df4 = pandas.read_csv(fp)print(df4) sep: 字段分隔符,默认为, sep 字段分隔符,默认为, delim...
df6 = pandas.read_csv('data2.csv', header=None) print(df6) names自定义列名 names自定义列名,如果header=None,则可以使用该参数。 df6 = pandas.read_csv( 'data2.csv', header=None, names=['姓名', '性别', '年龄', '邮箱']) print(df6) index_col 用作行索引的列编号或列名 index_col...
df4 = pandas.read_csv(fp) print(df4) sep: 字段分隔符,默认为, sep 字段分隔符,默认为, delimiter(同sep,分隔符) 示例如下: df1 = pandas.read_csv('data.csv', sep=',') print(df1) df2 = pandas.read_csv('data.csv', delimiter=',') ...
import pandas as pd # 从本地文件读取CSV数据 df = pd.read_csv('data.csv') 2. 从远程URL读取 如果CSV文件位于互联网上的某个URL地址上,可以将URL传递给io参数来读取数据。例如: import pandas as pd # 从远程URL读取CSV数据 url = 'https://example.com/data.csv' df = pd.read_csv(url) 3...
示例1:import pandas as pd# 创建DataFramedata = {'Name': ['Alice', 'Bob', 'Carol'],'Age': [25, 30, 35]}df = pd.DataFrame(data)# 将DataFrame写入CSV文件df.to_csv('output.csv', index=False)# 读取写入的CSV文件并打印df_read = pd.read_csv('output.csv')print(df_read)输出结果:...
read_csv('data2.csv', header=None) print(df6) names自定义列名 names自定义列名,如果header=None,则可以使用该参数。 代码语言:python 代码运行次数:0 运行 AI代码解释 df6 = pandas.read_csv( 'data2.csv', header=None, names=['姓名', '性别', '年龄', '邮箱']) print(df6) index_col 用...
df = pd.read_csv('https://xxx.csv')可以是一个path对象。path对象可能大家不太熟悉,其实Python内置库pathlib提供了Path类。在使用path对象时,可以先导入这个类。>>>from pathlib import Path# 实例化产生path对象>>>p = Path(r'C:UsersyjDesktopdata.csv')>>>df = pd.read_csv(p)>>>df id ...
df_csv=pd.read_csv('user_info.csv',skipfooter=1) 跳过底部指定数目的行: 19.nrows 接受类型:{int, optional} 指定要读取的文件行数。用于读取大型文件。 df_csv=pd.read_csv('user_info.csv',nrows=50) 20.na_values 接受类型:{scalar, str, list-like, or dict, optional} ...