pandas.read_csv参数index_col=0 index_col : int or sequence or False, default None ⽤作⾏索引的列编号或者列名,如果给定⼀个序列则有多个⾏索引。如果⽂件不规则,⾏尾有分隔符,则可以设定index_col=False 来使得pandas不使⽤第⼀列作为⾏索引。如:train_df = pd.read_csv('./input/...
pandas.read_csv 参数 index_col=0 index_col: int or sequence or False, default None 用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。 如果文件不规则,行尾有分隔符,则可以设定index_col=False 来使得pandas不使用第一列作为行索引。 如: train_df = pd.read_csv('./input/train.csv')...
在使用 Pandas 进行数据分析和处理时,read_csv是一个非常常用的函数,用于从 CSV 文件中读取数据并将其转换成 DataFrame 对象。read_csv函数具有多个参数,可以根据不同的需求进行灵活的配置。本文将详细介绍read_csv函数的各个参数及其用法,帮助大家更好地理解和利用这一功能。 常用参数概述 pandas的 read_csv 函数用...
index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。 importpandasaspd# 我们想要将'`email`'列作为DataFrame的索引df8 = pd.read_csv(...
在pandas库中,read_csv方法用于读取csv文件。通过设置index_col参数,可以指定将哪一列作为索引。如果不设置index_col参数,默认索引为数字索引。 importpandasaspd# 读取csv文件并设置第一列为索引df=pd.read_csv('data.csv',index_col=0)print(df) 1. ...
首先,我们先看一下read_csv函数有哪些参数(pandas版本号为1.2.1):pd.read_csv( filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, ...
首先,我们先看一下read_csv函数有哪些参数(pandas版本号为1.2.1): pd.read_csv( filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, ...
读Excel 文件等方法会有很多相同的参数,用法基本一致。 语法 它的语法如下: pd.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, ...
df6 = pandas.read_csv( 'data2.csv', header=None, names=['姓名', '性别', '年龄', '邮箱']) print(df6) index_col 用作行索引的列编号或列名 index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果...
index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。 import pandas as pd