names自定义列名,如果header=None,则可以使用该参数。 df6 = pandas.read_csv( 'data2.csv', header=None, names=['姓名', '性别', '年龄', '邮箱']) print(df6) index_col 用作行索引的列编号或列名 index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默...
df = pd.read_csv('data.csv', na_values=['NA', 'Unknown']) 解析日期 如果CSV文件包含日期信息,您可以使用parse_dates参数将指定的列解析为日期。 import pandas as pd # 解析"date"列为日期 df = pd.read_csv('data_with_dates.csv', parse_dates=['date']) 自定义列名 使用header参数可以自定义...
张六,男,22,123@qq.com# 读取示例df6 = pandas.read_csv('data2.csv', header=None)print(df6) names自定义列名 names自定义列名,如果header=None,则可以使用该参数。 df6 = pandas.read_csv('data2.csv', header=None, names=['姓名','性别','年龄','邮箱'])print(df6) index_col 用作行索引...
张六,男,22,123@qq.com# 读取示例df6 = pandas.read_csv('data2.csv', header=None)print(df6) names自定义列名 names自定义列名,如果header=None,则可以使用该参数。 df6 = pandas.read_csv('data2.csv', header=None, names=['姓名','性别','年龄','邮箱'])print(df6) index_col 用作行索引...
pandas的 read_csv 函数用于读取CSV文件。以下是一些常用参数: filepath_or_buffer: 要读取的文件路径或对象。 sep: 字段分隔符,默认为,。 delimiter: 字段分隔符,sep的别名。 header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。
pandas的 read_csv 函数用于读取CSV文件。以下是一些常用参数: filepath_or_buffer: 要读取的文件路径或对象。 sep: 字段分隔符,默认为,。 delimiter: 字段分隔符,sep的别名。 header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。
pandas的 read_csv 函数用于读取CSV文件。以下是一些常用参数: filepath_or_buffer: 要读取的文件路径或对象。 sep: 字段分隔符,默认为,。 delimiter: 字段分隔符,sep的别名。 header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。
pandas的 read_csv 函数用于读取CSV文件。以下是一些常用参数: filepath_or_buffer: 要读取的文件路径或对象。 sep: 字段分隔符,默认为,。 delimiter: 字段分隔符,sep的别名。 header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。
Pandas库read_csv()中用于读取CSV文件的常用参数 filepath_or_buffer--->CSV文件的路径或URL地址。 sep--->CSV文件中字段分隔符,默认为逗号。 delimiter--->CSV文件中字段分隔符,默认为None。 header--->指定哪一行作为列名,默认为0,即第一行。 names...
查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置header为空(默认读取第一行,即header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入names参数设置表头名称或设置header=None。 参考文档 这是pandas的read_csv的官方文档:python - pandas.read_csv ...