(Rational Root Theorem) 是试根法的一部分,用于简化试根法,帮助我们排除大部分不可能的值,减少计算量。因为是基础知识点,这里直接就给定义了: Letf(x)be the polynomialf(x)=anxn+an−1xn−1+an−2xn−2+...+a1x+a0, where all theaiare integers and bothananda0are nonzero. Ifpandqare ...
The theorem that, if a rational number p / q, where p and q have no common factors, is a root of a polynomial equation with integral coefficients, then the coefficient of the term of highest order is divisible by q and the coefficient of the term of lowest order is divisible by p.Mc...
Rational Zero Theorem A theorem that provides a complete list of possible rational roots of the polynomial equation anxn + an–1xn–1 + ··· + a2x2 + a1x + a0 = 0 where all coefficients are integers.This list consists of all possible numbers of the form c/d, where c and d ar...
同理, q 是4 的约数。 考虑到 p,q 互质, q=\pm1 分别代入即可, q=1 时, a^2+4b^2+5=0 ,矛盾。 q=-1 ,也就是 a^2-4b^2+3=0 (2b+a)(2b-a)=3 (a,b)=(1,1),(-1,1),(-1,-1),(1,-1) 其实就是有理根定理了……详细请点进: 不用卡丹公式,一元三次方程如何巧解...
在国际数学的领域中,有理根定理( Rational Root Theorem)如同试根法的金钥匙,它巧妙地简化了我们的寻找过程,避免了大量无效尝试。让我们深入理解它的核心概念:给定一个多项式 ,其中 为整数且 和 都不为零。如果 和 是互质的整数,且 是其可能的有理根,那么 必须是 ...
有理根定理,这个概念在九州大学2018年高考理科第四题中有所体现。该题考察的是整数与特定公式的关系,要求我们利用这个定理来分析一个函数。该定理指出,如果一个多项式的有理根可以表示为分数形式,其分母只能是原多项式系数的公约数,而分子则为一个整数。题目中,首先通过观察[公式]和[公式]的关系,...
The Rational Root Theorem is used in math to find the possible rational roots of a polynomial function, most specifically when the function is not factorable. These rational roots can also be called: x-intercepts, zeros or solutions. To solve for them set the polynomial equal to 0, as y=...
Find your Math Personality!LearnPracticeDownload Rational Root TheoremThe rational root theorem, as its name suggests, is used to find the rational solutions of a polynomial equation (or zeros or roots of a polynomial function). The solutions derived at the end of any polynomial equation are ...
Rational Root Theorem 作者:Surhone, Lambert M.; Timpledon, Miriam T.; Marseken, Susan F. 页数:78 ISBN:9786131130960 豆瓣评分 目前无人评价 我要写书评 Rational Root Theorem的书评 ···(全部 0 条)
(x)=0. The Rational Root Theorem ~ states that If P(x) is a polynomial with integer coefficients and if is a zero of P(x) then p is a factor of the constant term of P(x) and q is a factor of the leading coefficient of P(x). Using this theorem we can find all the ...