(1)任意矩阵左乘列满秩或者右乘行满秩不改变矩阵的秩 怎么证明。 (2)R(AB)大于等于R(A)+R(B)-n_哔哩哔哩,证法存在一个问题,需要证明解决。 (3)“rank(AB)≥ rank(A)+ rank(B)-n”的证明思路来源于【矩阵秩】r(AB)≥r(A)+r(B)-n_哔哩哔哩以及其中的某条评论。虽然评论的说法可能不够准确。
1.对于矩阵 A,B,如果 AB=0,试证明:rank(A)+rank(B)≤n。 证明:令 W 为方程 AX=0 的解空间,那么 dimW=n−rank(A) ,因为 AB=0 ,因此B 中的任意列向量 βi都满足 βi∈W(i=1,2,...,n) ,因此 rank(B)≤dimW 。故有 r(A)+r(B)≤n。 2.(Sylvester不等式)对于矩阵 An×n,Bn×...
A,B是矩阵A*B的秩不小于A的秩+B的秩-阶数.矩阵的秩是指矩阵线性无关的行(列)的最大数.结果一 题目 rank(AB)>=rank(A)+rank(B)-n,这是什么意思? 答案 A,B是矩阵A*B的秩不小于A的秩+B的秩-阶数.矩阵的秩是指矩阵线性无关的行(列)的最大数.相关推荐 1rank(AB)>=rank(A)+rank(B)-n,这...
rankab与ranka rankb的关系 我们先证明(A+B)X=0可以推出AX=0且BX= 0,0=A(A+B)X=A^2X,由于rankA^2=rankA且任意AX=0的解为A^2X=0的解,我们有AX=0与A^2X=0的解空间相等,于是A^2X=0推出AX= 0,此时当然有BX= 0. 为了估计rank(A+B)的值,我们由上面的探索得到启示去估计(A+B)X=0的解...
秩不改变 AB与n阶单位矩阵En构造分块矩阵 |AB O| |O En| A分乘下面两块矩阵加到上面两块矩阵,有 |AB A| |0 En| 右边两块矩阵分乘-B加到左边两块矩阵,有 |0 A | |-B En| 所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B) 即r(A)+r(B)-n<=r(AB)
矩阵A可以通过初等变换,化为矩阵B ,或矩阵B可以通过初等变换,化为矩阵ArankA=rankB 即矩阵A的秩 等于 矩阵B的秩 ,或矩阵A 与 矩阵B 有相同的行秩(或列秩);或矩阵A 与 矩阵B 的极大无关 行(列)向量组的个数相同的.定理表明:以上两个命题是等价的 .结果一 题目 矩阵论中,当A~B则rankA=rankB表示...
rank(a b)<=rank(a) rank(b) 设A是m*n的矩阵,B是n*s的矩阵,将矩阵A按行分块,A=(a1,a2……am)T,T表示转置 那么AB=(a1B,a2B……amB)T, 设A的秩为r 不妨设A的行向量的极大无关组为a1,a2……ar(也就是r个向量组成A的行向量的极大无关组),那么A的任何一个行向量都可以用A的行向量的...
已知A是一个m*n的矩阵,B是一个n*p的矩阵。一个矩阵A的列秩(rank)是A的线性无关的最大的列数,行秩是A的最大线性无关的行数AB之列可由A之列线性组合表出,AB之行可由B之行线性组合表出==rank(AB)=min(rank(A),rank(B));min=最小值rank(AB)=rank(A)---(1)rank(AB)=rank(B)...
A,B是矩阵 A*B的秩不小于A的秩+B的秩-阶数。矩阵的秩是指矩阵线性无关的行(列)的最大数。