拟合sub-estimators 的集合。 feature_importances_ndarray 形状 (n_features,) 基于杂质的特征重要性。 n_features_int 已弃用:属性n_features_在版本 1.0 中已弃用,并将在 1.2 中删除。 n_features_in_:int 拟合期间看到的特征数。 feature_names_in_:ndarray 形状(n_features_in_,) 拟合期间看到的特征名称。
随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,通过构建多个决策树并汇总其预测结果...
importances = model.feature_importances_ print(importances) ``` 此外,还可以使用交叉验证技术对模型进行评估,以避免过拟合问题。以下是一个使用交叉验证的示例: ```python from sklearn.model_selection import cross_val_score #进行10折交叉验证并计算评分 scores = cross_val_score(model, X, Y, cv=10...
result.loc[CityIndex, ['test_R']] = r2 importances = rf0.feature_importances_ df_ipt = pd.DataFrame(importances, columns=["feature_importance"]) feature_imp["feature_importance"] = df_ipt return rf0 global CityName,CityIndex CityIndex = 0 feature_imp = pd.DataFrame(data=[]) feature...
imp=[*zip(feature_name,regr.feature_importances_)] imp x=[] y=[] foriinrange(0,8): x.append(imp[i][0]) foriinrange(0,8): y.append(imp[i][1]) %matplotlib inline plt.figure(figsize=(15,10)) plt.barh(x,y,color='green') ...
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有...
属性中最重要的依然是feature_importances_,接口依然是apply、fit 、predict、 score最核心。 返回顶部 ② 简单使用 --- 波士顿房价随机森林回归验证 frommatplotlibimportpyplotasplt fromsklearn.datasetsimportload_boston from...
(rfr_path) >>> rf2.getNumTrees() 2 >>> model_path = temp_path + "/rfr_model" >>> model.save(model_path) >>> model2 = RandomForestRegressionModel.load(model_path) >>> model.featureImportances == model2.featureImportances True >>> model.transform(test0).take(1) == model2....
This study investigated the feature importance of near-infrared spectra from random forest regression models constructed to predict the carbonization characteristics of hydrochars produced by hydrothermal carbonization of kraft lignin. The model achieved high coefficients of determination of 0.989, 0.988, and...
Feature importance with a random forest is different from the coefficients in a model like LinearRegression. Unfortunately, there's no simple equation like that to write down for a random forest; it's many many different regression trees, each of which are (even by themselves) not a simple ...