换句话说,它相当于一个随机数种子(random seed)用来控制类或函数的随机模式。 例如在构建随机森里模型时,我们会用到random_state这个参数: rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train)
random_state是Python机器学习中用于控制算法随机性的参数,确保实验的可重复性和结果的一致性。它在多个场景中发挥重要作用,包
集成学习肯定是在实战中最不可或缺的思想了.毕竟都想把错误率低一点,再低一点,再低一点.看看kaggle大...
RandomForestClassifier(max_depth=7, max_features=1, max_samples=0.9, n_estimators=50, random_state=42) The model was save using joblib. I load the model as follows model = joblib.load(modelPath) I make predictions as follow predictions = model.predict(XNP) yProbability = model.predict...
(X, y, test_size=0.2, random_state=42) # 创建随机森林分类器 rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42) # 训练分类器 rf_classifier.fit(X_train, y_train) # 使用训练好的模型进行预测 y_pred = rf_classifier.predict(X_test) # 评估模型性能 accuracy = ...
Random - State of Mind, Pt. 2 专辑: Rewind 歌手:Random 还没有歌词哦Random - State of Mind, Pt. 2 / 已添加到播放列表 1 播放队列/1 1 State of Mind, Pt. 2 Random 03:22Mac版酷狗音乐已更新 就是歌多 详情 下载 × 提示 该音频不支持网页播放请下载客户端播放 打开客户端下载新版...
Something went wrong and this page crashed! If the issue persists, it's likely a problem on our side. Unexpected end of JSON input SyntaxError: Unexpected end of JSON input