可以是模型均值也可以是模型的预测值,两者相除表示当前模型比均值的 naive 模型优化的程度,因此优化的越好,score 越接近 1 。 m = RandomForestRegressor(n_jobs=-1) m.fit(X_train, y_train) m.score(X_valid, y_valid) 当然除了这个模型自带的 score 以外,我们也是需要查看 Kaggle 自己需要的模型验证函数...
m = RandomForestRegressor(n_jobs=-1) m.fit(X_train, y_train) m.score(X_valid, y_valid) 当然除了这个模型自带的 score 以外,我们也是需要查看 Kaggle 自己需要的模型验证函数的确保我们的成绩在 leaderboard 上排名好。这个部分,Sklearn 提供了 metrics module 来计算各种评价指标,详见sklearn metrics。
fromsklearn.ensembleimportRandomForestClassifiertrainSet,trainLabel,testSet,testLabel=getFuturesDataSet(npyPath,0.67)model=RandomForestClassifier(bootstrap=True,random_state=0) model.fit(trainSet,trainLabel) #降维 # x_pca_test = pca.fit_transform(x_test) result=model.predict(np.array(testSet)) 相...
在生成过程中,能够获取到内部生成误差的一种无偏估计/It generates an internal unbiased estimate of the generalization error as the forest building progresses; 对于缺省值问题也能够获得很好得结果/It has an effective method for estimating missing data and maintains accuracy when a large proportion of the ...
作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园...
作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园...
Something went wrong and this page crashed! If the issue persists, it's likely a problem on our side. Unexpected end of JSON input SyntaxError: Unexpected end of JSON input
The imbalance ratio for this dataset is IR = 5.88. When running the proposed random forest algorithm on the SDSS DR14 dataset, the following confusion matrix is obtained (Figure 4): Figure 4. Confusion matrix resulting from applying the proposed random forest algorithm on the SDSS DR14 ...
Unexpected end of JSON inputkeyboard_arrow_upcontent_copySyntaxError: Unexpected end of JSON input at https://www.kaggle.com/static/assets/app.js?v=592f12e3a6c77867d2c4:2:2881759 at https://www.kaggle.com/static/assets/app.js?v=592f12e3a6c77867d2c4:2:2878392 at Object.next (https://...
Each tree in the forest is built from a bootstrap sample of the original dataset, which is an additional source of diversity. Random predictors selected in the nodes of bagged trees help to decorrelate the trees and improve prediction accuracy as well as reduce the model variance. The RF ...