} rf=RandomForestClassifier() grid_search=GridSearchCV(rf,parameters,scoring='accuracy',cv=5) grid_search.fit(x,y) grid_search.best_estimator_ #查看最优参数 grid_search.best_score_ #正确率 grid_search.best_params_ #最佳组合 rf2=RandomForestClassifier(criterion='gini',max_features=2, n_es...
本文簡要介紹 pyspark.ml.classification.RandomForestClassifier 的用法。 用法: class pyspark.ml.classification.RandomForestClassifier(*, featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5, maxBins=32, minInstance...
Spark ML中的随机森林分类器(RandomForestClassifier)是基于集成学习方法的一种分类模型。它由多个决策树组成,每个决策树都是通过对训练数据进行自助采样(bootstrap)和特征随机选择而生成的。 以下是Spark ML中随机森林分类器的工作原理: 数据准备:将输入的训练数据划分为若干个随机子样本。对于每个子样本,从原始数据集...
criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点。 splitter: ”best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认。 max_features: 选择最适属性时划分的特征不能超过此值。 当为整数时,即...
创建`RandomForestClassifier`或`RandomForestRegressor`实例,并设置参数,如树的数量`n_estimators`,树的最大深度`max_depth`等。```python # 分类问题 rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)# 回归问题 # rf_regressor = RandomForestRegressor(n_estimators=100, random_...
随机森林分类器(Random Forest Classifier,又称为“随机森林”)是一种常用的机器学习算法,它是基于决策树的一种集成学习方法,是一种集成算法(Ensemble Learning),它属于Bagging类型,通过组合多个弱分类器,最终结果通过投票或取均值,使得整体模型的结果具有较高的精确度和泛化性能。
通过训练,RandomForestClassifier模型的性能较强,模型训练和验证结果相近,未出现严重过拟合和欠拟合现象。因此,根据“故障模式”、“故障模式细分”、“故障名称”3种属性的特征值,使用RandomForestClassifier算法模型,预测燃气灶维修方式的方法是可行的,而且模型准确率较高。通过这种方法,为降低电器厂商维修成本,增加企业利...
RandomForestClassifier函数的参数含义详解: max_features:随机森林允许单个决策树使用特征的最大数量。 Python为最大特征数提供了多个可选项。 下面是其中的几个: Auto/None :简单地选取所有特征,每颗树都可以利用他们。这种情况下,每颗树都没有任何的限制。
本文简要介绍python语言中sklearn.ensemble.RandomForestClassifier的用法。 用法: classsklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, mi...
rfc=RandomForestClassifier(n_estimators=30,oob_score=True)rfc=rfc.fit(wine.data,wine.target)rfc.oob_score_四.重要属性和接口随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply,fit,predict和score。除此之外,还需要注意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被...