在实现Agent搭建的时候,function call是一个非常简单而且有用的方式,通过自定义的function,让大模型根据输入的query来匹配是否需要调用函数和调用哪个函数。当然,我们也可以让大模型自动生成开通ecs的代码,并且调用code_interpreter(代码解释器插件)来进行运行,甚至可以指定它来进行自主的调优,但是这就是一个具有多个step的...
Agent-G引入了一种新颖的代理架构,将图知识库与非结构化文档检索相结合。通过结合结构化和非结构化数据源,该框架增强了检索增强生成(RAG)系统,提高了推理和检索精度。它采用模块化检索器库、动态代理交互和反馈循环,以确保高质量输出。 Agent-G的核心理念:Agent-G的核心原则在于其能够动态地将检索任务分配给专门的...
由于Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上 官网:https://dify.ai/zh github:https:/...
这些自然语言处理大模型凭借其庞大的参数量和在海量数据上的训练,展现出了令人惊叹的语言理解和生成能力,除了原始的文本生成、机器翻译、情感分析和自动问答等基础功能,还衍生出了以检索增强生成和Agent搭建为背景的特定领域功能,比如客服质检、风控辅助、智能投研等。它们不仅大幅提高了交互的自然度和效率,还促进了诸如...
由于Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上 ...
做了逻辑处理的Agent框架 单条回复的消耗不到2K token。 一、为什么需要RAG+Agent的组合 当前Rag问答通常会存在较大的幻觉,模型容易基于自身知识进行胡编乱造。通常企业期望只基于知识库内容进行解答,不乱发散。而我们发现Agent有很好的观察、思考的机制。能有效的控制模型的发散问题 ...
创建一个针对单个文档生成Tool Agent的函数,在这个函数中,将对一个文档创建两个索引与对应的RAG引擎: 针对普通事实性问题的向量索引与RAG引擎 针对更高层语义理解的总结类问题的摘要索引与RAG引擎 最后,我们把这两个引擎作为一个Agent可使用的两个tool,构建一个Tool Agent返回。
做了逻辑处理的Agent框架 单条回复的消耗不到2K token。 一、为什么需要RAG+Agent的组合 当前Rag问答通常会存在较大的幻觉,模型容易基于自身知识进行胡编乱造。通常企业期望只基于知识库内容进行解答,不乱发散。而我们发现Agent有很好的观察、思考的机制。能有效的控制模型的发散问题 ...
本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。 一、概况 目前有关大模型的定义与算法介绍的文章已经很多,本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用,让个人对于大模型应...