所以为了消除量纲的影响,我们可以对这个MSE 开方,得到的结果就第二个评价指标:均方根误差 RMSE(Root Mean Squared Error): 可以看出,RMSE=sqrt(MSE),因此,MSE 和 RMSE 二者是呈正相关的,MSE 值大,RMSE 值也大,所以在评价线性回归模型效果的时候,使用 RMSE 就可以了。 3、平均绝对误差:MAE(Mean Absolute Erro...
1,均方误差 均方误差(MSE)的定义如下, 2,均方根误差 均方根误差(RMSE)是回归模型的典型指标,用于指示模型在预测中会产生多大的误差,对于较大的误差,权重较高。 y是实际值,而y~ 是预测值, RMSE越小越好。 3,平均绝对误差 平均绝对误差(MAE)用来衡量预测值与真实值之间的平均绝对误差,MAE越小表示模型越好,其...
平均绝对误差 MAE(Mean Absolute Error) 均方误差 MSE(Mean Square Error) 均方根误差 RMSE(Root Mean Square Error) 平均绝对百分比误差 MAPE(Mean Absolute Percentage Error) 其中,MAE和MSE使用较为广泛。 需要根据不同比赛的不同评价指标进行选择。 通常,sklearn.metrics中评估函数以_score结尾返回一个值,越大...
RMSE(Root Mean Squared Error):均方根误差,是对MSE值求平方根之后的结果。 避免正负数的差值互相抵消的方式,除了平方之外,还可以求绝对值,我们将每天的差值求绝对值,再相加除以天数,就是MAE指标了。 MAE(Mean Absolute Error):平均绝对误差,就是求出每天真实值和预测值差值的绝对值,求和后再除以天数。 整体来...
2、均方根误差(Root Mean Square Error,RMSE) 3、平均绝对误差(Mean Absolute Error,MAE) MAE=1n∑i=1n|yi−yi~|,∈[0,+∞) 4、R2分数(1-模型没有捕获的信息量占真实标签中所携带的信息量的比例) 分母是真实值的方差,方差越大,携带信息量越多。R2越接近1越好,模型极差情况下会小于0。
简介:回归模型是预测模型的一种,主要用于预测一个或多个因变量与一个或多个自变量之间的依赖关系。为了评估回归模型的性能,需要使用一系列评价指标。这些指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数R2 score。这些指标各有特点,可用于不同情况下的模型评估。
2、均方根误差:RMSE(Root Mean Squard Error) 可以看出,RMSE=sqrt(MSE)。 3、平均绝对误差:MAE(Mean Absolute Error) 以上各指标,根据不同业务,会有不同的值大小,不具有可读性,因此还可以使用以下方式进行评测。 4、决定系数:R2(R-Square) def R2(y_test, y_true): ...
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),其中用得最为广泛的就是MAE和MSE。下面依次来进行一个大致的介绍,同时对于...
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),其中用得最为广泛的就是MAE和MSE。下面依次来进行一个大致的介绍,同时对于...
整体来说,MSE会放大差异,更容易被发现,适合在开发过程中使用。MAE采用的是更简洁的计算,最接近真实的误差值,常用来作为实际评估指标。而RMSE经过了平方再开方,其数值会比MAE略大一点。 二、R²的含义和计算 我们已经可以利用MSE等指标计算模型预测值和实际值的差异了,看起来好像已经够用了,但是我们得到的是个数值...