X-squared = 13.055, df = 2, p-value = 0.001463 > mytable <- xtabs(~Improved+Sex, data = Arthritis) > chisq.test(mytable) Pearson's Chi-squared test data: mytable X-squared = 4.8407, df = 2, p-value = 0.08889 Warning message: In chisq.test(mytable) : Chi-squared近似算法有可能...
, "Skewness", "Kurtosis", "JB", "P-value JB","ARCH(12)", "Q^2(12)") rownames(sum.stats) <- names(stat.x) sum.stats[, i] <- stat.x } #sum.stats ``` # Save the statistics in an Excel file: ```{r} write.xlsx(as.data.frame(sum.stats), file = paste("Output/...
repo-style transactio report and statistics report back to vt report bfile report criterion report exceptions and report generator lang report maker report of closing acc report of the panel report on the survey report options report results report results to cus report serious violat report the los...
range sort range specification range value rangevariable rangsit university rang the changes ranitidine rank rankranking rank array ranked alphabet ranked element ranked group ranked of automata ranking rank statistics rank stem rank suffix rank sum test rannes man ranser resource alloc rantopad rao repai...
p-value = 0.001393 alternative hypothesis: two.sided #备注:fisher.test()函数可以在任意行列数大于2的二维列联表中使用,但是不能用于2*2的列联表 #Cochran-Mantel-Haenszel检验 #mantelhaen.test()函数用于Cochran-Mantel-Haenszel卡方检验 #检验治疗情况和GIA是你情况在性别的每一水平下是否独立 ...
语法:aov(formula,data=dataframe)图3:aov()函数的使用 3.用summary()函数提取方差分析结果图4:提取方差分析的结果 二、r语言方差分析结果怎么看 可以从图4中看到提取到的方差分析的结果,呈现一个列联表形式。 Df表示自由度 Sum Sq 表示平方和 Mean Sq 表示均方 F value 是F值 Pr(>F)是p值 sspecies即为...
Fit: coxph(formula = Surv(time, status) ~ age + sex + ph.ecog + meal.cal +wt.loss, data = data_1) Linear Hypotheses:Estimate Std.Error z valuePr(>|z|)1 - 0==00.33580.23331.4390.437972-0==01.00230.29263.4260.00256**3-0==02.08571.04871.98...
## $statistics ## MSerror Df Mean CV t.value LSD ## 0.4307502 116 2.7025 24.2855 1.980626 0.3356368 ## ## $parameters ## test p.ajusted name.t ntr alpha ## Fisher-LSD none trt 4 0.05 ## ## $means ## weight std r LCL UCL Min Max Q25 Q50 Q75 ...
gghistostats(data=ToothGrowth,x=len,xlab="Tooth length",test.value=25) 检验的功效, 是指对立假设成立时检验拒绝 的概率 , 其中 是第二类错误, 即当对立假设成立时错误地接受 的概率。 需要足够大的样本量才能使得检验能够发现实际存在的显著差异。
variable is explained by the independent variables, while a value of 0 suggests that the independent variables do not explain any of the variability. R-squared should be interpreted alongside other statistics and context, as high R-squared values can sometimes be misleading if the model is over...