R^{2}的推导有一系列严格的数学过程,维基百科对R^{2}的解释是: “R2 equals the square of the Pearson correlation coefficient between the observed y and modeled (predicted) f data values of the dependent variable.” 你可以简单地理解成R^{2}等于实测值(x)和拟合值(y)的相关系数的平方。 而在投...
r2_square功能;from sklearn.metrics import r2_score coefficient_of_dermination = r2_score(y, p...
以下分布的密度、累积概率、分位数函数和随机变量生成:正态、均匀、二项式、 泊松(Poisson)、F、 学生t(Student’s t)、 卡方(Chi-square)、 贝塔(beta)和伽玛(gamma) 进行中的工作 显然,这是一项正在进行的工作,我计划在此脚本中添加一些其他方便的R函数。 例如,在 R 中,单行命令 lm 可以为数字数据集提供...
rubus rosifolius rubus sachalinensis v rubus tephrodes var s rubus trianthus ruby square ruby br ruby felt like scream ruby hacking guide ruby heart spaulders ruby jean hamilton ruby my dear ruby tuesday featurin ruby-eyed rubytech ge-1140 rucker parker ruco-coat th rudarius rudder angle mete...
Square Business (Independent Publisher) Square Payments (Independent Publisher) Stability.ai (Independent Publisher) Staffbase StaffCircle Star Wars (Independent Publisher) StarRez REST v1 Storm Glass (Independent Publisher) Stormboard Strava (Independent Publisher) Stripe Studio Ghibli (Independent Publisher)...
SQUAREM 2017.10-1 https://cran.r-project.org/web/packages/SQUAREM/index.html sROC 0.1-2 https://cran.r-project.org/web/packages/sROC/index.html stabledist 0.7-1 https://cran.r-project.org/web/packages/stabledist/index.html stabs 0.6-3 https://cran.r-project.org/web/packages/stabs/in...
Square Business (Independent Publisher) Square Payments (Independent Publisher) Stability.ai (Independent Publisher) Staffbase StaffCircle Star Wars (Independent Publisher) StarRez REST v1 Storm Glass (Independent Publisher) Stormboard Strava (Independent Publisher) Stripe Studio Ghibli (Independent Publisher)...
[5764星][3m] [Objective-C] square/ponydebugger Remote network and data debugging for your native iOS app using Chrome Developer Tools [4627星][16d] [C] google/ios-webkit-debug-proxy A DevTools proxy (Chrome Remote Debugging Protocol) for iOS devices (Safari Remote Web Inspector). [4343星]...
results<-crossval(x,y,theta.fit,theta.predict,ngroup=k) r2<-cor(y,fit$fitted.values)^2 r2cv<-cor(y,results$cv.fit)^2 cat("original r-square=",r2,"\n") cat(k,"fold cross-validated r-square =",r2cv,"\n") cat("change=",r2-r2cv),"\n") }...
## The root mean squareoftheresiduals(RMSR)is0.04## The df corrected root mean squareofthe residuals isNA## ## The harmonic numberofobservations is36withthe empirical chi square3.42withprob<NA## The total numberofobservations was36withLikelihood Chi Square=11.69withprob<NA## ...