回归样条(regression spline)本质上是一个分段多项式, 但它一般要求每个分段点上连续并且二阶可导,这样可以保证曲线的平滑性。而限制性立方样条是在回归样条的基础上附加要求:样条函数在自变量数据范围两端的两个区间内为线性函数。 在利用限制性立方样条绘制曲线关系时,通常需要设置样条函数节点的个数(k)和位置(ti)。
在这些情况下,你可能会发现,药物剂量和血压之间的关系,或者饮食与心脏病之间的联系,并不是一条直线,而是一个曲折的路径。这时,限制性立方样条(Restricted Cubic Spline, RCS)就派上用场了。 什么是限制性立方样条? 简单来说,RCS可以帮助我们更好地理解两个变量之间复杂的关系。它用灵活的线条描绘出变量之间真实的...
因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,「限制性立方样条」(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。 样条(spline)原本是指是一种灵活的细木条或金属条,用来绘制平滑曲线。样条曲线本质是一个分段多项式函数,此函数受限于某些控制点,称为 “节点”,节点放置在数...
因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,「限制性立方样条」(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。 样条(spline)原本是指是一种灵活的细木条或金属条,用来绘制平滑曲线。样条曲线本质是一个分段多项式函数,此函数受限于某些控制点,称为 “节点”,节点放置在数...
因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,「限制性立方样条」(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。 样条(spline)原本是指是一种灵活的细木条或金属条,用来绘制平滑曲线。样条曲线本质是一个分段多项式函数,此函数受限于某些控制点,称为 “节点”,节点放置在...
限制性立方样条(Restricted cubic spline,RCS)是分析非线性关系的最常见的方法之一。RCS用三次函数拟合不同节点之间的曲线并使其平滑连接,从而达到拟合整个曲线并检验其线性的过程。可以想见,RCS的节点数对拟合结果来说非常重要。通常,小于30个样本数的小样本取3个节点,大样本取5个节点。
常见的解决方法是将连续变量分类,但类别数目和节点位置的选择往往带有主观性,并且分类往往会损失信息。因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,限制性立方(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。 近年来在Lancet、BMJ等杂志经常见到利用限制性立方样条来拟合非线性...
因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,「限制性立方样条」(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。 样条(spline)原本是指是一种灵活的细木条或金属条,用来绘制平滑曲线。样条曲线本质是一个分段多项式函数,此函数受限于某些控制点,称为 “节点”,节点放置在...
限制性立方样条RCS(Restricted cubic spline)是分析非线性关系的最常见的方法之一。RCS在医学研究中也是经常使用的一种方法. 知乎文章(https://zhuanlan.zhihu.com/p/424309805)里边介绍了为什么在医学中常用RCS 01为什么要使用限制性立方样条? 在研究中,我们经常会使用回归模型来分析自变量和因变量之间的关系。但是很多...
临床上,因变量和临床的结局有时候不是线性关系,而回归模型有一个重要的假设就是自变量和因变量呈线性关联,因此非线性关系模型用回归分析来拟合受到限制。因此,一个更好的解决方法是拟合自变量与因变量之间的非线性关系,限制性立方样条(Restricted cubic spline,RCS)就是分析非线性关系的最常见的方法之一。