Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。 方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。 方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。 方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。 方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
控制错误发现率:Benjamini & Hochberg法 简称BH法。首先将各P值从小到大排序,生成顺序数 排第k的矫正P值=P×n/k 另外要保证矫正后的各检验的P值大小顺序不发生变化。 怎么做检验 R内置了一些方法来调整一系列p值,以控制多重比较谬误(Familywise error rate)或控制错误发现率。
方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。 请注意,这些方法只需要调整p值和要比较的p值的数量。这与Tukey或Dunnett等方法不同,Tukey和Dunnett也需要基础数据的变异性。Tukey和Dunnett被认为是多重比较谬误(Familywise error rate)方法...
Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。 方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。
控制错误发现率:Benjamini & Hochberg法 简称BH法。首先将各P值从小到大排序,生成顺序数排第k的矫正P值=P×n/k另外要保证矫正后的各检验的P值大小顺序不发生变化。 怎么做检验 R内置了一些方法来调整一系列p值,以控制多重比较谬误(Familywise error rate)或控制错误发现率。
拓端数据tecdat:R语言多重比较示例:Bonferroni校正法和Benjamini & Hochberg法 原文链接:http://tecdat.cn/?p=21825 = 假设检验的基本原理是小概率原理,即我们认为小概率事件在一次试验中实际上不可能发生。 = 多重比较的问题 当同一研究问题下进行多次假设检验时,不再符合小概率原理所说的“一次试验”。如果在该...
Holm、Hochberg、Hommel和Bonferroni方法控制了多重比较谬误(Familywise error rate)。这些方法试图限制错误发现的概率(I型错误,在没有实际效果时错误地拒绝无效假设),因此都是相对较保守的。 方法BH(Benjamini-Hochberg,与R中的FDR相同)和BY(Benjamini & Yekutieli)控制错误发现率,这些方法试图控制错误发现的期望比例。