特别是,我们将考虑iid模型,AR模型,ARMA模型以及一些ARCH和GARCH模型(稍后将对方差建模进行更详细的研究)。 # 拟合i.i.d.模型 coef(iid_fit)#> mu sigma #> 0.0005712982 0.0073516993mean(logreturns_trn)#> [1] 0.0005681388sd(logreturns_trn)#> [1] 0.007360208# 拟合AR(1)模型coef(ar_fit)#> mu ar...
模型AIClog likelihoodA R M A ( 1, 0) 6880.5-3437.26A R M A ( 0, 1)9346.89-4670.44A R M A ( 1, 1)6882.5-3437.25A R M A ( 2, 1)6884.2-3437.12A R M A ( 1,2)6904.7-3447.35A R M A ( 2, 2)6883.6-3435.84A R M A ( 3, 1)6899.1-3443.58A R M A ( 1, 3)7096.61 ...
2.R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长 3.波动率的实现:ARCH模型与HAR-RV模型 4.R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测 5.GARCH(1,1),MA以及历史模拟法的VaR比较 6.R语言多元COPULA GARCH 模型时间序列预测 7.R语言基于ARMA-GARCH过程的VAR拟合和预测 8.matlab预...
首先我们读取数据 计算得到对数收益率后,然后我们可以绘制这三个时间序列: 这个想法是在这里使用一些多变量ARMA-GARCH过程。 这里的第一部分用于模拟时间序列平均值的动态,第二部分用于模拟时间序列方差的动态。 本文考虑了两种模型 关于ARMA模型残差的多变量GARCH过程(或方差矩阵动力学模型) 关于ARMA-GARCH过程残差的多...
建立ARMA-GARCH 模型步骤 建立黄金价格ARMA-GARCH模型通常包括5个步骤,即序列平稳性验证、模型识别及参数估计、异方差效应检验、建立ARMA-GARCH模型及参数估计、模型诊断与实证分析。建立模型过程见图。 数据采集 笔者所选取的样本数据为XX定盘价格(用P表示,单位为美元/盎司),共计851个数据,利用计量分析软件R完成 ...
建立黄金价格ARMA-GARCH模型通常包括5个步骤,即序列平稳性验证、模型识别及参数估计、异方差效应检验、建立ARMA-GARCH模型及参数估计、模型诊断与实证分析。建立模型过程见图。 数据采集 笔者所选取的样本数据为XX定盘价格(用P表示,单位为美元/盎司),共计851个数据,利用计量分析软件R完成 平稳性检验及数据处理 通过黄...
4.R语言基于ARMA-GARCH过程的VAR拟合和预测 5.GARCH(1,1),MA以及历史模拟法的VaR比较 6.R语言时变参数VAR随机模型 7.R语言实现向量自动回归VAR模型 8.R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型 9.R语言VAR模型的不同类型的脉冲响应分析 ...
在本文中,我们展示了 copula GARCH 方法拟合模拟数据和股票数据并进行可视化。r还提供了一个特殊情况(具有正态或学生 t残差)。 一、如何在R中对股票x和y的收益率拟合copula模型 数据集 为了这个例子的目的,我使用了一个简单的股票x和y的收益率数据集(x.txt和y.txt)。
建立黄金价格ARMA-GARCH模型通常包括5个步骤,即序列平稳性验证、模型识别及参数估计、异方差效应检验、建立ARMA-GARCH模型及参数估计、模型诊断与实证分析。建立模型过程见图。 数据采集 笔者所选取的样本数据为XX定盘价格(用P表示,单位为美元/盎司),共计851个数据,利用计量分析软件R完成 ...
建立ARMA-GARCH模型步骤 建立黄金价格ARMA-GARCH模型通常包括5个步骤,即序列平稳性验证、模型识别及参数估计、异方差效应检验、建立ARMA-GARCH模型及参数估计、模型诊断与实证分析。建立模型过程见图。 数据采集 笔者所选取的样本数据为XX定盘价格(用P表示,单位为美元/盎司),共计851个数据,利用计量分析软件R完成 ...