红线表示 GARCH 模型产生的 VaR,蓝线表示 delta-normal VaR。 VaR预测 该ugarchroll 方法允许执行的模型/数据集组合的滚动估计和预测。它返回计算预测密度的任何所需度量所需的分布预测参数。我们将最后 500 个观测值设置为测试集,并对条件标准偏差进行滚动移动 1 步预测, . 我们每 50 次观察重新估计 GARCH 参数。
当我说GARCH家族时,它表明模型有变化。 SGARCH。普通GARCH EGARCH。指数GARCH,允许波动率不为负值(这迫使模型只输出正方差 FGARCH。这是为长记忆模型准备的。它使用了被称为 ARFIMA 的 Fractionaly integrated ARIMA(即非整数整合)。 GARCH-M:这是GARCH的均值,适合你的均值方程中有波动率例如CAPM的方程中有σ。
最后,GARCH模型还试图说明时间序列的异方差行为(即,波动性聚类的特征)以及该序列先前值的序列影响(由AR解释)和噪声项(由MA解释)。GARCH模型使用方差本身的自回归过程,也就是说,它使用方差的历史值来说明方差随时间的变化。 那么我们如何应用这些模型? 有了这种背景,我接下来将ARIMA / GARCH模型拟合到EUR / USD汇...
在拟合ARIMA模型中,简约的思想很重要,在该模型中,模型应具有尽可能小的参数,但仍然能够解释级数(p和q应该小于或等于2,或者参数总数应小于等于鉴于Box-Jenkins方法3)。参数越多,可引入模型的噪声越大,因此标准差也越大。 点击标题查阅往期内容 R语言ARMA-GARCH-COPULA模型和金融时间序列案例 左右滑动查看更多 01 02...
ARIMA-GARCH是一种时间序列分析方法,结合了ARIMA模型(Autoregressive Integrated Moving Average)和GARCH模型(Generalized Autoregressive Conditional Heteroskedasticity)。它是用于预测和建模金融时间序列数据中的波动性和趋势的方法。 ARIMA模型用于描述时间序列数据的趋势和季节性成分,它包括自回归(AR)和移动平均(MA)成分,以及...
GARCH-M:这是GARCH的均值,适合你的均值方程中有波动率例如CAPM的方程中有σ。 GJR-GARCH。假设负面冲击和正面冲击之间存在不对称性(金融数据几乎都是这样)。 为收益率序列建立波动率模型包括四个步骤: 通过测试数据中的序列依赖性来指定一个均值方程,如果有必要,为收益序列建立一个 计量经济学模型(例如,ARIMA 模型...
在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型 波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立一个波动率方程(例如 GARCH, ARCH,这些方程是由 Robert Engle 首先开发的)。 要做(1),你需要利用著名的Box-Jenkins方法,它包括三个主要步骤。
对于时间序列分析,有两种数据格式:ts(时间序列)和xts(可扩展时间序列)。前者不需要时间戳,可以直接从向量转换。后者非常重视日期和时间,因此只能使用日期和/或时间列来定义。我们涵盖了基本的时间序列模型,即 ARMA、GARCH 和 VAR。 时间序列数据 函数ts将任何向量转换为时间序列数据。
在严格的白噪声中,噪声项{et}不能线性或非线性地预测。在一般的白噪声中,可能无法线性预测,但可由稍后讨论的ARCH / GARCH模型非线性预测。有三点需要注意: •严格的平稳性并不意味着平稳性弱,因为它不需要有限的方差 •平稳性并不意味着严格的平稳性,因为严格的平稳性要求概率分布不会随时间变化 ...
在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型。波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立一个波动率方程(例如 GARCH, ARCH,这些方程是由 Robert Engle 首先开发的)。 要做(1),你需要利用著名的Box-Jenkins方法,它包括三个主要步骤。