首先,定义一个quickSort函数,它的参数是一个数组。...var quickSort = function(arr) { }; 然后,检查数组的元素个数,如果小于等于1,就返回。...(left).concat([pivot], quickSort(right)); }; 使用的时候,直接调用quickSort()就行了。 广告 域名专场特惠 热销域名限时优惠,.com域名.
quickSort(arr, pi + 1, high); } } int main() { int arr[] = {10, 7, 8, 9, 1, 5}; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); printf("Sorted array: "); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); }...
1. 主函数中读入待排序数组元素的个数 n 以及各个元素 a[i]。 2. 调用快速排序函数 quicksort 对整个数组进行排序,传入参数为数组左右边界的下标 left 和 right。初始调用时应该是 quicksort(1,n)。 3. 在快速排序函数中,先判断数组是否为空(即 left > right),是则直接返回。 4. 取得 a[left] 作为基...
Quick Sort Algorithm Function/Pseudo CodequickSort(array<T>& a) { quickSort(a, 0, a.length); quickSort(array<T> & a, int i, int n) { if (n <= 1) return; T pi = a[i + rand() % n]; int p = i - 1, j = i, q = i + n; while (j < q) { int comp = ...
{ uint32_t temp = 0; temp = *a; *a = *b; *b = temp; } void quick_sort(uint32_t arr[], int32_t start, int32_t end) { uint32_t pivot = arr[start]; int32_t i = 0; int32_t j = 0; if(start >= end) //退出递归的条件 { return; } for(i...
一、快速排序介绍快速排序(Quick Sort)使用分治法策略。它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法…
quicksort(x, low, pivot - 1) quicksort(x, pivot + 1, high) Pseudo Code for recursive QuickSort function 代码语言:javascript 代码运行次数:0 运行 AI代码解释 /* low --> Starting index, high --> Ending index */ void quickSort(arr[], low, high) { if (low < high) { /* pi is ...
you have learned about quicksort in C. This sorting algorithm will help you quickly sort an array or even a list as it is almost twice or thrice as faster when compared to other sorting algorithms in C. You can now use quicksort in C with the partition() function to sort an array an...
Next Project: Randomise quicksort in c++ Previous Project: HeapSort in c++ Return to Project Index Post New Project Related Projects Elipse in C++ Line in c++ using DDA algorithm Creating a circle in c++ Hidden Picture Game Mobile TV
The Quicksort in C is the fastest known sort algorithm because of its highly optimized partitioning of an array of data into smaller arrays.