Quicksort是一种常用的排序算法,它基于分治的思想,通过递归地将数组分成较小和较大的两个子数组来实现排序。下面是C语言中Quicksort的实现: 代码语言:c 复制 #include<stdio.h>voidswap(int*a,int*b){intt=*a;*a=*b;*b=t;}intpartition(intarr[],intlow,inthigh){intpivot=arr[high];inti=(low-1)...
quickSort(arr, pi + 1, high); } } int main() { int arr[] = {10, 7, 8, 9, 1, 5}; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); printf("Sorted array: "); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); }...
AI代码解释 voidQuickSort(int*a,int left,int right){if(left>=right){return;}if((right-left+1)<10){InsertSort(a+left,right-left+1);}else{//三数取中int midi=GetMidi(a,left,right);Swap(&a[left],&a[midi]);int keyi=left;int begin=left,end=right;while(begin<end){while(begin<en...
1. 主函数中读入待排序数组元素的个数 n 以及各个元素 a[i]。 2. 调用快速排序函数 quicksort 对整个数组进行排序,传入参数为数组左右边界的下标 left 和 right。初始调用时应该是 quicksort(1,n)。 3. 在快速排序函数中,先判断数组是否为空(即 left > right),是则直接返回。 4. 取得 a[left] 作为基...
一、快速排序介绍快速排序(Quick Sort)使用分治法策略。它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法…
{ uint32_t temp = 0; temp = *a; *a = *b; *b = temp; } void quick_sort(uint32_t arr[], int32_t start, int32_t end) { uint32_t pivot = arr[start]; int32_t i = 0; int32_t j = 0; if(start >= end) //退出递归的条件 { return; } for(i...
Quick Sort Algorithm Function/Pseudo CodequickSort(array<T>& a) { quickSort(a, 0, a.length); quickSort(array<T> & a, int i, int n) { if (n <= 1) return; T pi = a[i + rand() % n]; int p = i - 1, j = i, q = i + n; while (j < q) { int comp = ...
Partition() Function for QuickSort in C The partition() function, as mentioned earlier, divides and subdivides an array for sorting it using the selected pivot element. Quick sort in C can pick different pivot elements, such as: Always the first element of thearray ...
Notice, in the above, that the check to make sure the inputs are valid are done on entry to the recursive function. This simplifies the last part of the function. The same code could, alternatively, be written similar to yours, as: void quicksort(int *arr, const int left, const int...
The Quicksort in C is the fastest known sort algorithm because of its highly optimized partitioning of an array of data into smaller arrays.