加密破译:Shor's Algorithm 可以在多项式时间内完成因式分解,这使得基于大整数因子分解的经典加密方法(如RSA)变得不再安全。量子密钥分发(QKD):利用量子力学的不可克隆定理,可以实现理论上绝对安全的通信协议。2. 优化问题 量子计算在解决优化问题方面具有显著优势,特别是在处理复杂的组合优化问题时:组合优化:G...
Shor's AlgorithmSimon's AlgorithmRSA EncryptionQuantum computing is an exciting technology which utilizes the unique properties of quantum mechanics to increase the speed of classical computational operations in certain cases. However, understanding quantum computing requires knowledge of both computer science...
Shor算法 (Shor's Algorithm) Shor算法是一种用于整数因式分解的量子算法。它的出现引发了对经典加密技术的广泛关注。通过利用量子叠加和量子干涉,Shor算法能够在多项式时间内完成因式分解,这在经典计算中是不可行的。 Grover算法 (Grover's Algorithm) Grover算法是一种用于无序数据库搜索的量子算法。它能够将搜索时间...
·Shor算法(Shor’s Algorithm):用于快速分解大整数,威胁到传统加密算法的安全性。 ·Grover算法(Grover’s Algorithm):用于加速未排序数据库的搜索过程,比经典算法更高效。 2. 量子计算的技术进展 2. Technological Advancements in Quantum Computing 2.1 量子计算机的实现技术(Quantum Computer Implementation Technologies...
肖尔算法 Shor's algorithm 肖尔提出的一种求解质因数分解的量子算法。 格罗弗算法 Grover's algorithm 格罗弗提出的一种数据搜索的量子算法。 量子查询 quantum query 量子算法通过查询仅知道输入输出关系而不知道内部结构的量子系统或设备,获取有关输入和输出的对应信息的方法。 量子傅里叶变换 quantum Fourier transform...
Shor's Algorithm Version 0.1 The implementation of a scalable instance of Shor's algorithm for factoring large integers using a combination of classical and quantum computing algorithms. Motivation The vision of this project is to lower the use barrier for physicists and industry domain experts to ...
1994:Peter Shor, an American mathematician and computer scientist, invents Shor's algorithm, which can be used as a decomposition of numbers and is a groundbreaking development. With his algorithm, quantum computers can now decode theoretically complicated encryptions efficiently. ...
Two specific quantum algorithms form this quantum threat: Grover’s algorithm, which can target Symmetric Key Crypto systems, and Shor’s algorithm, which can quickly decode the integer factorization process used to generate asymmetric key pairs used in PKC. As of now, quantum computing is too ...
Quantum computing use cases First theorized in the early 1980s, it wasn’t until 1994 that MIT mathematician Peter Shor published one of the first practical real-world applications for a quantum machine. Shor’s algorithm for integer factorization demonstrated how a quantum mechanical computer could...
另外一个更惊人的是肖尔算法shor's algorithm,它可以用来分析函数的周期性,是因子分解问题的核心算法。这让计算复杂度从$O(e^{n^{1/3}})\to O(n^3)$,有巨大的提升。 另外的一种算法是用量子计算机解决量子问题。后面的章节会说明,仅仅是表示n个比特的量子态,在经典计算机中复杂度都会指数型增长,但对量子...