这个方法to_matrix_op转变为VectorStateFn。 print(((Plus^Minus)^2).to_matrix_op())print(((Plus^One)^2).to_circuit_op())print(((Plus^One)^2).to_matrix_op().sample())# 结果VectorStateFn(Statevector([0.25-6.1e-17j,-0.25+6.1e-17j,0.25-6.1e-17j,-0.25+6.1e-17j,-0.25+6.1e-17...
we want to compute the gradients params = [a, b] # Define the values to be assigned to the parameters value_dict = { a: np.pi / 4, b: np.pi} # Combine the Hamiltonian observable and the state into an expectation value operator op = ~StateFn(H) @ CircuitStateFn(primitive=qc, ...
Qiskit is an open-source SDK for working with quantum computers at the level of extended quantum circuits, operators, and primitives. - qiskit/qiskit/circuit/library/standard_gates/x.py at stable/1.2 · Qiskit/qiskit
_matrix) return ret # pylint: disable=arguments-differ def construct_evaluation_circuit(self, wave_function, statevector_mode=True, use_simulator_snapshot_mode=None, circuit_name_prefix=''): """ Construct the circuits for evaluation. Args: wave_function (QuantumCircuit): the quantum circuit. ...
from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) circuit = QuantumCircuit(qr, cr) circuit.draw() [it worked, output: q0_0: q0_1: c0: 2/ ] circuit.h(qr[0]) [output: <qiskit.circuit.instructionset.InstructionSet at 0x12dc15...
Two-qubit unitary peephole optimization collects two-qubit blocks in the circuit and replaces them with a unitary matrix representation. This matrix is then synthesized using fewer gates than the block it replaces. To add this technique to theinitstage, we run theConsolidateBlockspass prior to la...
Circuit Knitting Toolbox 86 IBM-maintained Algorithms Circuit building tool Qiskit SAT Synthesis Repo Synthesis plugins for Cliffords, linear functions, permutations, and more. 5 Community-maintained Transpiler plugin qiskit-qubit-reuse Repo 18
Register as a new user and use Qiita more conveniently You get articles that match your needs You can efficiently read back useful information You can use dark theme What you can do with signing up Sign upLogin How developers code is here. ...
fromqiskitimportQuantumCircuit,assemble,Aerfrommathimportpi,sqrtfromqiskit.visualizationimportplot_bloch_multivector,plot_histogram sim=Aer.get_backend('aer_simulator') 1.泡利门 您应该熟悉线性代数部分中的泡利矩阵。如果这里的任何数学对你来说是新的,你应该使用线性代数部分来提高自己的速度。我们将在这里看到...
\begin{bmatrix}0 & 1 \ 1 & 0 \\end{bmatrix} = X $$ 在Qiskit中,我们可以创建一个短电路来验证这一点: # Let'sdoanX-gate on a|0>qubit qc=QuantumCircuit(1)qc.x(0)qc.draw() 让我们看看上述电路的结果。注意: 这里我们使用plot_bloch_multivector(),它接受量子比特的状态向量而不是布洛赫...